Super-tough poly(lactic acid) materials: Reactive blending with ethylene copolymer

被引:361
作者
Oyama, Hideko I. [1 ]
机构
[1] Rikkyo Univ, Dept Sci, Toshima Ku, Tokyo 1718501, Japan
关键词
Poly(lactic acid); Reactive blending; Interface; LOW-DENSITY POLYETHYLENE; BIODEGRADABLE POLYMERS; COMPATIBILIZATION; MISCIBILITY; POLY(L-LACTIDE); MORPHOLOGY; STARCH; CRYSTALLIZATION; POLYSULFONE; COMPOSITES;
D O I
10.1016/j.polymer.2008.12.025
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(lactic acid) (PLA) is well known as a biocompatible, bioresorbable, and biodegradable polymer superior to petrochemical polymers from the standpoint of total energy consumption and life-cycle CO(2) emission, since it can be obtained from natural sources. However, the brittleness of PLA is a big drawback for its wide application. Although many studies have been carried out modifying PLA, there is very limited work on reactive blending of PLA. This study demonstrates a dramatic improvement in the mechanical characteristics of PLA by its reactive blending with poly(ethylene-glycidyl methacrylate) (EGMA). It is shown that the interfacial reaction between the component polymers contributes to the formation of super-tough PLA materials, superior to benchmark acrylonitrile-butadiene-styrene (ABS) resins. The novel material highlights the importance of interface control in the preparation of multicomponent materials. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:747 / 751
页数:5
相关论文
共 31 条
[1]   Toughening of polylactide by melt blending with linear low-density polyethylene [J].
Anderson, KS ;
Lim, SH ;
Hillmyer, MA .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 89 (14) :3757-3768
[2]   DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends [J].
Cao, X ;
Mohamed, A ;
Gordon, SH ;
Willett, JL ;
Sessa, DJ .
THERMOCHIMICA ACTA, 2003, 406 (1-2) :115-127
[3]   Impact modification of poly(ethylene terephthalate) [J].
Chapleau, N ;
Huneault, MA .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 90 (11) :2919-2932
[4]   Pull-out of copolymer in situ-formed during reactive blending: effect of the copolymer architecture [J].
Charoensirisomboon, P ;
Inoue, T ;
Weber, M .
POLYMER, 2000, 41 (18) :6907-6912
[5]   Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study [J].
Eguiburu, JL ;
Iruin, JJ ;
Fernandez-Berridi, MJ ;
Roman, JS .
POLYMER, 1998, 39 (26) :6891-6897
[6]   INVESTIGATION OF STRUCTURE OF SOLUTION GROWN CRYSTALS OF LACTIDE COPOLYMERS BY MEANS OF CHEMICAL-REACTIONS [J].
FISCHER, EW ;
STERZEL, HJ ;
WEGNER, G .
KOLLOID-ZEITSCHRIFT AND ZEITSCHRIFT FUR POLYMERE, 1973, 251 (11) :980-990
[7]   Miscibility and mechanical properties of blends of (L)-lactide copolymers with atactic poly(3-hydroxybutyrate) [J].
Focarete, ML ;
Scandola, M ;
Dobrzynski, P ;
Kowalczuk, M .
MACROMOLECULES, 2002, 35 (22) :8472-8477
[8]   Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate) [J].
Gajria, AM ;
Dave, V ;
Gross, RA ;
McCarthy, SP .
POLYMER, 1996, 37 (03) :437-444
[9]   Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent [J].
Harada, Masaki ;
Ohya, Tsubasa ;
Iida, Kouji ;
Hayashi, Hideki ;
Hirano, Koji ;
Fukudal, Hiroyuki .
JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 106 (03) :1813-1820
[10]   Morphology and properties of compatibilized polylactide/thermoplastic starch blends [J].
Huneault, Michel A. ;
Li, Hongbo .
POLYMER, 2007, 48 (01) :270-280