Leptin and hyperleptinemia - from friend to foe for cardiovascular function

被引:248
作者
Ren, J [1 ]
机构
[1] Univ Wyoming, Coll Hlth Sci, Div Pharmaceut Sci, Laramie, WY 82071 USA
[2] Univ Wyoming, Coll Hlth Sci, Grad Program Neurosci, Laramie, WY 82071 USA
关键词
D O I
10.1677/joe.0.1810001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The obese gene product, leptin, plays a central role in food intake and energy metabolism. The physiological roles of leptin in human bodily function have been broadened over the past decade since leptin was first discovered in 1994. Evidence has suggested that leptin plays a specific role in M the intricate cascade of cardiovascular events, in addition to its well-established metabolic effects. Leptin, a hormone linking adiposity and central nervous circuits to reduce appetite and enhance energy expenditure, has been shown to increase overall sympathetic nerve activity, facilitate glucose utilization and improve insulin sensitivity. In addition, leptin is capable of regulating cardiac and vascular contractility through a local nitric oxide-dependent mechanism. However, elevated plasma leptin levels or hyperleptinemia, have been demonstrated to correlate with hyperphagia, insulin resistance and other markers of the metabolic syndrome including obesity, hyperlipidemia and hypertension, independent of total adiposity. Elevated plasma leptin levels may be an independent risk factor for the development of cardiovascular disease. Although mechanisms leading to hyper-leptinemia have not been well described, factors such as increased food intake and insulin resistance have been shown to rapidly enhance plasma leptin levels and subsequently tissue leptin resistance. These findings have prompted the speculation that leptin in the physiological range may serve as a physiological regulator of cardiovascular function whereas elevated plasma leptin levels may act as a pathophysiological trigger and/or marker for cardiovascular diseases due to tissue leptin resistance.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 97 条
[1]   Leptin [J].
Ahima, RS ;
Flier, JS .
ANNUAL REVIEW OF PHYSIOLOGY, 2000, 62 :413-437
[2]   Insulin and leptin combine additively to reduce food intake and body weight in rats [J].
Air, EL ;
Benoit, SC ;
Clegg, DJ ;
Seeley, RJ ;
Woods, SC .
ENDOCRINOLOGY, 2002, 143 (06) :2449-2452
[3]   Pathophysiological role of leptin in obesity-related hypertension [J].
Aizawa-Abe, M ;
Ogawa, Y ;
Masuzaki, H ;
Ebihara, K ;
Satoh, N ;
Iwai, H ;
Matsuoka, N ;
Hayashi, T ;
Hosoda, K ;
Inoue, G ;
Yoshimasa, Y ;
Nakao, K .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 105 (09) :1243-1252
[4]  
Anderson Cindy M., 2002, Cellular and Molecular Biology (Noisy-Le-Grand), V48, pOL323
[5]   Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis [J].
Atkinson, LL ;
Fischer, MA ;
Lopaschuk, GD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (33) :29424-29430
[6]   Leptin selectively decreases visceral adiposity and enhances insulin action [J].
Barzilai, N ;
Wang, JL ;
Massilon, D ;
Vuguin, P ;
Hawkins, M ;
Rossetti, L .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (12) :3105-3110
[7]   Respiratory uncoupling lowers blood pressure through a leptin-dependent mechanism in genetically obese mice [J].
Bernal-Mizrachi, C ;
Weng, S ;
Li, B ;
Nolte, LA ;
Feng, C ;
Coleman, T ;
Holloszy, JO ;
Semenkovich, CF .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2002, 22 (06) :961-968
[8]   Divergent signaling capacities of the long and short isoforms of the leptin receptor [J].
Bjorbaek, C ;
Uotani, S ;
da Silva, B ;
Flier, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (51) :32686-32695
[9]   The role of SOCS-3 in leptin signaling and leptin resistance [J].
Bjorbæk, C ;
El-Haschimi, K ;
Frantz, JD ;
Flier, JS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :30059-30065
[10]   Role of fatty acids in the pathogenesis of insulin resistance and NIDDM [J].
Boden, G .
DIABETES, 1997, 46 (01) :3-10