Grand canonical Monte Carlo and non-equilibrium molecular dynamics simulation study on the selective adsorption and fluxes of oxygen/nitrogen gas mixtures through carbon membranes

被引:30
作者
Wang, SM
Yu, YX [1 ]
Gao, GH
机构
[1] Tsing Hua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[2] Tsing Hua Univ, State Key Lab Chem Engn, Beijing 100084, Peoples R China
关键词
gas separation; carbon membrane; molecular simulation; adsorption; flux;
D O I
10.1016/j.memsci.2005.07.033
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The equilibrium selective adsorption and fluxes of oxygen/nitrogen binary gas mixtures through carbon membranes are investigated at 303 K, respectively, using a grand canonical Monte Carlo simulation and a dual control volume grand canonical molecular dynamics method. The carbon membrane pores are modeled as slit-like pores with a two-dimensional structure where carbon atoms are placed according to the structure of graphite layers. The effect of the membrane thickness, bulk pressure, and pore width on the equilibrium selective adsorption and dynamic separation factor is discussed. Meanwhile a new iteration approach to calculate the flux and dynamic separation factor of binary gas mixtures through membranes is proposed, by which we can simulate the permeation and fluxes of gases through the membranes in the presence of pressure gradient and consider the effect of pressure and composition of low-pressure side in the meantime. The simulated results show that bulk pressure and membrane thickness have no effect on the equilibrium selectivity, but they have a great effect on the fluxes and dynamic separation factors of gases. The pore width impacts the equilibrium selectivity and dynamic separation factors strongly, especially when the pore width is very small. Molecular sieving dominates the separation of oxygen/nitrogen in non-equilibrium simulations. But due to the comparable molecular size of oxygen and nitrogen, we have to modify the carbon membranes in order to improve dynamic separation of atmosphere. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 150
页数:11
相关论文
共 32 条
[1]  
Allen M. P., 2009, Computer Simulation of Liquids
[2]   Molecular transport in nanopores [J].
Bhatia, SK ;
Nicholson, D .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (03) :1719-1730
[3]   INTERACTIONS OF DIATOMIC-MOLECULES WITH GRAPHITE [J].
BOJAN, MJ ;
STEELE, WA .
LANGMUIR, 1987, 3 (06) :1123-1127
[4]   Amorphous silica molecular sieving membranes by sol-gel processing [J].
Cao, GZ ;
Lu, YF ;
Delattre, L ;
Brinker, CJ ;
Lopez, GP .
ADVANCED MATERIALS, 1996, 8 (07) :588-&
[5]   Molecular dynamics simulations of transport and separation of carbon dioxide-alkane mixtures in carbon nanopores [J].
Firouzi, M ;
Nezhad, KM ;
Tsotsis, TT ;
Sahimi, M .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (17) :8172-8185
[6]   Nonequilibrium molecular dynamics simulations of transport and separation of supercritical fluid mixtures in nanoporous membranes. I. Results for a single carbon nanopore [J].
Firouzi, M ;
Tsotsis, TT ;
Sahimi, M .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (13) :6810-6822
[7]   MOLECULAR SIMULATION STUDY OF THE SURFACE-BARRIER EFFECT - DILUTE GAS LIMIT [J].
FORD, DM ;
GLANDT, ED .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (29) :11543-11549
[8]   Non-equilibrium molecular dynamics simulation studies on gas permeation across carbon membranes with different pore shape composed of micro-graphite crystallites [J].
Furukawa, S ;
Nitta, T .
JOURNAL OF MEMBRANE SCIENCE, 2000, 178 (1-2) :107-119
[9]   DIFFUSION IN LENNARD-JONES FLUIDS USING DUAL CONTROL-VOLUME GRAND-CANONICAL MOLECULAR-DYNAMICS SIMULATION (DCV-GCMD) [J].
HEFFELFINGER, GS ;
VANSWOL, F .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (10) :7548-7552
[10]   NITROGEN ADSORPTION IN SLIT PORES AT AMBIENT-TEMPERATURES - COMPARISON OF SIMULATION AND EXPERIMENT [J].
KANEKO, K ;
CRACKNELL, RF ;
NICHOLSON, D .
LANGMUIR, 1994, 10 (12) :4606-4609