Stochastic integrals of set-valued processes and fuzzy processes

被引:38
作者
Kim, BK [1 ]
Kim, JH [1 ]
机构
[1] Pusan Natl Univ, Dept Math, Pusan 609735, South Korea
关键词
D O I
10.1006/jmaa.1999.6461
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define the stochastic integrals of a set-valued process and a fuzzy process with respect to a cylindrical Brownian motion on a Hilbert space. We also give their properties, which are useful for the study of fuzzy stochastic differential equations and stochastic differential inclusions with a set-valued diffusion term. (C) 1999 Academic Press.
引用
收藏
页码:480 / 502
页数:23
相关论文
共 19 条
[1]   NONLINEAR STOCHASTIC DIFFERENTIAL-INCLUSIONS ON BANACH-SPACE [J].
AHMED, NU .
STOCHASTIC ANALYSIS AND APPLICATIONS, 1994, 12 (01) :1-10
[2]   RADON-NIKODYM THEOREM AND CONDITIONAL-EXPECTATION OF FUZZY-VALUED MEASURES AND VARIABLES [J].
BAN, J .
FUZZY SETS AND SYSTEMS, 1990, 34 (03) :383-392
[3]  
Castaing C, 1977, LECT NOTES MATH, V580, DOI DOI 10.1007/BFB0087686
[4]   INTEGRALS, CONDITIONAL EXPECTATIONS, AND MARTINGALES OF MULTIVALUED FUNCTIONS [J].
HIAI, F ;
UMEGAKI, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1977, 7 (01) :149-182
[5]  
JUNG EJ, FUZZY STOCHASTIC DIF
[6]   THE CAUCHY-PROBLEM FOR FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1990, 35 (03) :389-396
[7]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[8]  
Kisielewicz M., 1993, DISCUSS MATH, V13, P119
[9]  
Miyahara Y., 1982, CARLETON MATH LECT N, V42
[10]  
Negoita C., 1975, APPL FUZZY SETS SYST