The stationary measure of a 2-type totally asymmetric exclusion process

被引:37
作者
Angel, O [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
exclusion process;
D O I
10.1016/j.jcta.2005.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a combinatorial description of the stationary measure for a totally asymmetric exclusion process (TASEP) with second class particles, on either Z or on the cycle Z(N). The measure is the image by a simple operation of the uniform measure on some larger finite state space. This reveals a combinatorial structure at work behind several results on the TASEP with second class particles. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:625 / 635
页数:11
相关论文
共 12 条
[1]   Mixing times of the biased card shuffling and the asymmetric exclusion process [J].
Benjamini, I ;
Berger, N ;
Hoffman, C ;
Mossel, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (08) :3013-3029
[2]   THE OUTPUT OF A QUEUING SYSTEM [J].
BURKE, PJ .
OPERATIONS RESEARCH, 1956, 4 (06) :699-704
[3]  
DERRIDA B, 1993, J STAT PHYS, V73, P833
[4]   A combinatorial approach to jumping particles [J].
Duchi, E ;
Schaeffer, G .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 110 (01) :1-29
[5]  
FERRARI P, 2005, STATIONARY DISTRIBUT
[6]   MICROSCOPIC STRUCTURE OF TRAVELING WAVES IN THE ASYMMETRIC SIMPLE EXCLUSION PROCESS [J].
FERRARI, PA ;
KIPNIS, C ;
SAADA, E .
ANNALS OF PROBABILITY, 1991, 19 (01) :226-244
[7]   INVARIANT-MEASURES FOR A 2-SPECIES ASYMMETRIC PROCESS [J].
FERRARI, PA ;
FONTES, LRG ;
KOHAYAKAWA, Y .
JOURNAL OF STATISTICAL PHYSICS, 1994, 76 (5-6) :1153-1177
[8]  
Harrison J.M., 1985, Brownian Motion and Stochastic Flow Systems
[9]  
Liggett Thomas M., 1999, FUNDAMENTAL PRINCIPL, V324
[10]  
LIGGETT TM, 1985, FUNDAMENTAL PRINCIPL, V276