Sequence-specific interaction of U1 snRNA with the SMN complex

被引:71
作者
Yong, JS
Pellizzoni, L
Dreyfuss, G [1 ]
机构
[1] Univ Penn, Sch Med, Howard Hughes Med Inst, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
关键词
SMN; snRNP; spinal muscular atrophy; stem-loop; 1; U1; snRNA;
D O I
10.1093/emboj/21.5.1188
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The survival of motor neurons (SMN) protein complex functions in the biogenesis of spliceosomal small nuclear ribonucleoprotein particles (snRNPs) and probably other RNPs. All spliceosomal snRNPs have a common core of seven Sm proteins. To mediate the assembly of snRNPs, the SMN complex must be able to bring together Sm proteins with U snRNAs. We showed previously that SMN and other components of the SMN complex interact directly with several Sm proteins. Here, we show that the SMN complex also interacts specifically with U1 snRNA. The stem-loop I domain of U1 (SL1) is necessary and sufficient for SMN complex binding in vivo and in vitro. Substitution of three nucleotides in the SL1, loop (SL1A3) abolishes SMN interaction, and the corresponding U1 snRNA (U1A3) is impaired in U1 snRNP biogenesis. Microinjection of excess SL1 but not SL1A3 into Xenopus oocytes inhibits SMN complex binding to U1 snRNA and U1 snRNP assembly. These findings indicate that SMN complex interaction with SL1 is sequence-specific and critical for U1 snRNP biogenesis, further supporting the direct role of the SMN complex in RNP biogenesis.
引用
收藏
页码:1188 / 1196
页数:9
相关论文
共 51 条
[1]   THE CONFORMATION OF CHICKEN, RAT AND HUMAN U1-A RNAS IN SOLUTION [J].
BRANLANT, C ;
KROL, A ;
EBEL, JP ;
GALLINARO, H ;
LAZAR, E ;
JACOB, M .
NUCLEIC ACIDS RESEARCH, 1981, 9 (04) :841-858
[2]   U2 RNA SHARES A STRUCTURAL DOMAIN WITH U1, U4, AND U5 RNAS [J].
BRANLANT, C ;
KROL, A ;
EBEL, JP ;
LAZAR, E ;
HAENDLER, B ;
JACOB, M .
EMBO JOURNAL, 1982, 1 (10) :1259-1265
[3]   Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly:: implications for spinal muscular atrophy [J].
Buhler, D ;
Raker, V ;
Lührmann, R ;
Fischer, U .
HUMAN MOLECULAR GENETICS, 1999, 8 (13) :2351-2357
[4]   When is a deletion not a deletion? When it is converted [J].
Burghes, AHM .
AMERICAN JOURNAL OF HUMAN GENETICS, 1997, 61 (01) :9-15
[5]   Gemin4: A novel component of the SMN complex that is found in both gems and nucleoli [J].
Charroux, B ;
Pellizzoni, L ;
Perkinson, RA ;
Yong, J ;
Shevchenko, A ;
Mann, M ;
Dreyfuss, G .
JOURNAL OF CELL BIOLOGY, 2000, 148 (06) :1177-1186
[6]   Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems [J].
Charroux, B ;
Pellizzoni, L ;
Perkinson, RA ;
Shevchenko, A ;
Mann, M ;
Dreyfuss, G .
JOURNAL OF CELL BIOLOGY, 1999, 147 (06) :1181-1193
[7]   AN ESSENTIAL SIGNALING ROLE FOR THE M3G CAP IN THE TRANSPORT OF U1 SNRNP TO THE NUCLEUS [J].
FISCHER, U ;
LUHRMANN, R .
SCIENCE, 1990, 249 (4970) :786-790
[8]   The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis [J].
Fischer, U ;
Liu, Q ;
Dreyfuss, G .
CELL, 1997, 90 (06) :1023-1029
[9]   NUCLEOCYTOPLASMIC TRANSPORT OF U SNRNPS - DEFINITION OF A NUCLEAR LOCATION SIGNAL IN THE SM CORE DOMAIN THAT BINDS A TRANSPORT RECEPTOR INDEPENDENTLY OF THE M3G CAP [J].
FISCHER, U ;
SUMPTER, V ;
SEKINE, M ;
SATOH, T ;
LUHRMANN, R .
EMBO JOURNAL, 1993, 12 (02) :573-583
[10]   Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN) [J].
Friesen, MJ ;
Dreyfuss, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (34) :26370-26375