Size-controlled hydrothermal synthesis and high electrocatalytic performance of CoS2 nanocatalysts as non-precious metal cathode materials for fuel cells

被引:72
作者
Zhao, Chan [1 ]
Li, Dianqing [1 ]
Feng, Yongjun [1 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
关键词
OXYGEN-REDUCTION REACTION; MAGNETIC-PROPERTIES; MODEL CATALYSTS; COBALT OXIDE; H2O2; RELEASE; THIN-FILMS; NANOPARTICLES; CHALLENGES; NANOCRYSTALS; GRAPHENE;
D O I
10.1039/c3ta10296c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Non-precious metal chalcogenides are considered as a potential alternative to Pt-based cathode catalysts in polymer electrolyte membrane fuel cells because of their promising electrocatalytic performance and low cost. However, size-controlled synthesis of this class of materials still remains a big challenge. In this paper, we directly prepared CoS2 nanocatalysts by a hydrothermal route without any post treatment, developed a facile way to tune the particle size by adjusting the initial Co2+ concentration in the reaction system in the presence of a surfactant, and investigated the corresponding electrocatalytic performance for the oxygen reduction reaction (ORR) in alkaline medium in detail. The results show that the ORR activity mainly depends on the CoS2 mass loading on the electrode disk surface and the average particle size of the CoS2 nanocatalysts. The CoS2 catalyst with an average particle size of 30.7 nm exhibits excellent electrocatalytic performance with an OCP (open circuit potential) of 0.94 V vs. RHE, a half-wave potential (E-1/2) of ca. 0.71 V vs. RHE, and complete methanol tolerance for the ORR in 0.1 M KOH. This OCP value is the largest among non-precious metal chalcogenides to date, much close to that of 0.99 V vs. RHE for commercial Pt/C catalyst (E-TEK). In addition, the CoS2 nanocatalyst has comparable durability to the Pt/C catalyst in 0.1 M KOH. The CoS2 nanocatalyst is a promising candidate for alkaline membraneless fuel cell systems.
引用
收藏
页码:5741 / 5746
页数:6
相关论文
共 37 条
[1]   A review on methanol crossover in direct methanol fuel cells: challenges and achievements [J].
Ahmed, Mahmoud ;
Dincer, Ibrahim .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (14) :1213-1228
[2]   Platinum and Non-Platinum Nanomaterials for the Molecular Oxygen Reduction Reaction [J].
Alonso-Vante, Nicolas .
CHEMPHYSCHEM, 2010, 11 (13) :2732-2744
[3]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[4]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[5]   Influence of Co2+ Ion Concentration on the Size, Magnetic Properties, and Purity of CoFe2O4 Spinel Ferrite Nanoparticles [J].
Ayyappan, S. ;
Mahadevan, S. ;
Chandramohan, P. ;
Srinivasan, M. P. ;
Philip, John ;
Raj, Baldev .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6334-6341
[6]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[7]   A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Lee, Kunchan ;
Liu, Hansan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2008, 53 (15) :4937-4951
[8]   Loading of Se/Ru/C electrocatalyst on a rotating ring-disk electrode and the loading impact on a H2O2 release during oxygen reduction reaction [J].
Bonakdarpour, A. ;
Delacote, C. ;
Yang, R. ;
Wieckowski, A. ;
Dahn, J. R. .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (04) :611-615
[9]   H2O2 release during oxygen reduction reaction on Pt nanoparticles [J].
Bonakdarpour, Arman ;
Dahn, Tara R. ;
Atanasoski, R. T. ;
Debe, M. K. ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (11) :B208-B211
[10]   Impact of loading in RRDE experiments on Fe-N-C catalysts: Two- or four-electron oxygen reduction? [J].
Bonakdarpour, Arman ;
Lefevre, Michel ;
Yang, Ruizhi ;
Jaouen, Frederic ;
Dahn, Tara ;
Dodelet, Jean-Pol ;
Dahn, J. R. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (06) :B105-B108