Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction

被引:44
作者
Fenner, Kathrin [1 ,2 ,3 ]
Gao, Junfeng [4 ]
Kramer, Stefan [5 ]
Ellis, Lynda [4 ]
Wackett, Larry [3 ]
机构
[1] Eawag, Swiss Fed Inst Aquat Sci & Technol, CH-8600 Dubendorf, Switzerland
[2] ETH, Inst Biogeochem & Pollutant Dynam IBP, CH-8092 Zurich, Switzerland
[3] Univ Minnesota, Dept Biochem Mol Biol & Biophys, St Paul, MN 55108 USA
[4] Univ Minnesota, Dept Lab Med & Pathol, Minneapolis, MN 55455 USA
[5] Tech Univ Munich, Inst Informat I12, D-85748 Garching, Germany
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
D O I
10.1093/bioinformatics/btn378
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The University of Minnesota Pathway Prediction System (UM-PPS) is a rule-based expert system to predict plausible biodegradation pathways for organic compounds. However, iterative application of these rules to generate biodegradation pathways leads to combinatorial explosion. We use data from known biotransformation pathways to rationally determine biotransformation priorities (relative reasoning rules) to limit this explosion. Results: A total of 112 relative reasoning rules were identified and implemented. In one prediction step, i.e. as per one generation predicted, the use of relative reasoning decreases the predicted biotransformations by over 25 for 50 compounds used to generate the rules and by about 15 for an external validation set of 47 xenobiotics, including pesticides, biocides and pharmaceuticals. The percentage of correctly predicted, experimentally known products remains at 75 when relative reasoning is used. The set of relative reasoning rules identified, therefore, effectively reduces the number of predicted transformation products without compromising the quality of the predictions.
引用
收藏
页码:2079 / 2085
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 2004, ENV IMP ASS EIAS VET
[2]   Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002 [J].
Battaglin, WA ;
Kolpin, DW ;
Scribner, EA ;
Kuivila, KM ;
Sandstrom, MW .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2005, 41 (02) :323-332
[3]   Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics [J].
Button, WG ;
Judson, PN ;
Long, A ;
Vessey, JD .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (05) :1371-1377
[4]   A kinetic model for predicting biodegradation [J].
Dimitrov, S. ;
Pavlov, T. ;
Nedelcheva, D. ;
Reuschenbach, P. ;
Silvani, M. ;
Bias, R. ;
Comber, M. ;
Low, L. ;
Lee, C. ;
Parkerton, T. ;
Mekenyan, O. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2007, 18 (5-6) :443-457
[5]   The University of Minnesota Biocatalysis/Biodegradation Database: the first decade [J].
Ellis, Lynda B. M. ;
Roe, Dave ;
Wackett, Lawrence P. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D517-D521
[6]   Classification of metabolites with kernel-partial least squares (K-PLS) [J].
Embrechts, Mark J. ;
Ekins, Sean .
DRUG METABOLISM AND DISPOSITION, 2007, 35 (03) :325-327
[7]  
EMEA, 2006, GUID ENV RISK ASS ME
[8]   The environmental fate of organic pollutants through the global microbial metabolism [J].
Gomez, Manuel J. ;
Pazos, Florencio ;
Guijarro, Francisco J. ;
de Lorenzo, Victor ;
Valencia, Alfonso .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[9]   Encoding microbial metabolic logic: predicting biodegradation [J].
Hou, BK ;
Ellis, LBM ;
Wackett, LP .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2004, 31 (06) :261-272
[10]   Probabilistic assessment of biodegradability based on metabolic pathways: Catabol system [J].
Jaworska, J ;
Dimitrov, S ;
Nikolova, N ;
Mekenyan, O .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2002, 13 (02) :307-323