The regulation of ecosystem functions by ecotypic variation in the dominant plant:: a Spartina alterniflora salt-marsh case study

被引:108
作者
Seliskar, DM
Gallagher, JL
Burdick, DM
Mutz, LA
机构
[1] Univ Delaware, Coll Marine Studies, Halophyte Biotechnol Ctr, Lewes, DE 19958 USA
[2] Univ New Hampshire, Jackson Estuarine Lab, Dept Nat Resources, Durham, NH 03824 USA
关键词
community respiration; ecotype; edaphic algal chlorophyll; fish larvae; latitude; marsh functions; plant morphology; keystone species;
D O I
10.1046/j.0022-0477.2001.00632.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
1 Genetic differences among populations of a keystone species may affect ecosystem functional properties. We tested this by planting Spartina alterniflora from different geographical regions in a newly created salt marsh in Delaware, USA. 2 Spartina alterniflora plants from morphologically distinct short-form (back marsh) populations were originally collected from Massachusetts (41degrees34'N), Delaware (38degrees47'N), and Georgia (31degrees25'N) in the USA and vegetatively propagated for 6 years in a salt water-irrigated common garden in Delaware before transfer to a newly created salt marsh. 3 The magnitude of the expression of marsh functions in the created marsh, measured over 5 years, remained distinct in patches of each ecotype. End of season aerial biomass, below-ground biomass, root and rhizome distribution, canopy height, stem density, and carbohydrate reserves were closer to values reported for the plants' native sites than to those typical of Delaware. Thus, many of the plant features characteristic of particular latitudes appear to be under genetic control. Such ecotypic differentiation influences ecosystem function through keystone resource and keystone modifier activities. 4 Respiration of the microbial community associated with either dead shoots or the soil varied with plant ecotype in the created wetland and the patterns reflected those reported for their native sites. High edaphic respiration under the Massachusetts ecotype was correlated with the high percentage of sugar in the rhizomes. Edaphic chlorophyll was greater under the canopies of the Massachusetts and Delaware ecotypes than under the Georgia canopy and exhibited a relationship similar to that of algal production rates reported for the native sites. Larval fish were most abundant in pit traps in the Massachusetts ecotype.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 70 条
[1]  
Armstrong W., 1978, Plant Life in Anaerobic Environments. Processes in Anaerobiosis. (Hook, D.D.
[2]  
Crawford, R.M.M., Editors)., P269
[3]  
Christian R. R., 1981, The ecology of a salt marsh, P113
[4]   DO EEL GRASS BEDS AND SALT-MARSH BORDERS ACT AS PREFERENTIAL NURSERIES AND SPAWNING GROUNDS FOR FISH - AN EXAMPLE OF THE MIRA ESTUARY IN PORTUGAL [J].
COSTA, MJ ;
COSTA, JL ;
DEALMEIDA, PR ;
ASSIS, CA .
ECOLOGICAL ENGINEERING, 1994, 3 (02) :187-195
[5]   WATER-UPTAKE BY ROOTS CONTROLS WATER-TABLE MOVEMENT AND SEDIMENT OXIDATION IN SHORT SPARTINA MARSH [J].
DACEY, JWH ;
HOWES, BL .
SCIENCE, 1984, 224 (4648) :487-489
[6]  
FRESHWATER DW, 1988, J EXP MAR BIOL ECOL, V120, P239
[7]   PRIMARY PRODUCTION OF EDAPHIC ALGAL COMMUNITIES IN A DELAWARE SALT-MARSH [J].
GALLAGHE.JL ;
DAIBER, FC .
LIMNOLOGY AND OCEANOGRAPHY, 1974, 19 (03) :390-395
[8]  
GALLAGHER J L, 1974, Chesapeake Science, V15, P248
[9]   PHOTOSYNTHETIC AND CELLULAR PHOTOADAPTIVE CHARACTERISTICS OF 3 ECOTYPES OF THE MARINE DIATOM, SKELETONEMA-COSTATUM (GREV) CLEVE [J].
GALLAGHER, JC ;
ALBERTE, RS .
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 1985, 94 (1-3) :233-250
[10]   PERSISTENT DIFFERENCES IN 2 FORMS OF SPARTINA-ALTERNIFLORA - A COMMON GARDEN EXPERIMENT [J].
GALLAGHER, JL ;
SOMERS, GF ;
GRANT, DM ;
SELISKAR, DM .
ECOLOGY, 1988, 69 (04) :1005-1008