Genetic variation among strains of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae)

被引:62
作者
Bolch, CJS
Blackburn, SI
Hallegraeff, GM
Vaillancourt, RE
机构
[1] Univ Tasmania, Sch Plant Sci, Hobart, Tas 7001, Australia
[2] CSIRO, Hobart, Tas 7001, Australia
关键词
allozyme; ballast water; dinoflagellate; DNA; genetic variation; Gymnodinium catenatum; isozyme; multidimensional scaling; population genetics;
D O I
10.1046/j.1529-8817.1999.3520356.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The toxic dinoflagellate Gymnodinium catenatum Graham has formed recurrent toxic blooms in southeastern Tasmanian waters since its discovery in the area in 1986, Current evidence suggests that this species might have been introduced to Tasmania prior to 1973, possibly in cargo vessel ballast water carried from populations in Japan or Spain, followed by recent dispersal to mainland Australia. To examine this hypothesis, cultured strains from G. catenatum populations in Australia, Spain, Portugal, and Japan were examined using allozymes and randomly amplified polymorphic DNA (RAPD), Allozyme screening detected very limited polymorphism and was not useful for population comparisons; however, Australian, Spanish, Portuguese, and Japanese strains showed considerable RAPD diversity, and all strains examined represented unique genotypes, Multidimensional scaling analysis (MDS) of RAPD genetic distances between strains showed clear separation of strains into three nonoverlapping regional clusters: Australia, Japan, and Spain/Portugal. Analysis of genetic distances between strains from the three regional populations indicated that Australian strains were almost equally related to both the Spanish/Portuguese population and the Japanese population. Analysis of molecular variance (AMOVA) found that genetic variation was partitioned mainly within populations (87%) compared to the variation between the regions (8%) and between populations within regions (5%), The potential source population for Tasmania's introduced G. catenatum remains equivocal; however, strains from the recently discovered mainland Australian population (Port Lincoln, South Australia, 1996) clustered with Tasmanian strains, supporting the notion of a secondary relocation of Tasmanian G, catenatum populations to the mainland via a shipping vector. Geographic and temporal clustering of strains was evident among the Tasmanian strains, indicating that genetic exchange between neighboring estuaries is limited and that Tasmanian G, catenatum blooms are composed of localized, estuary-bound subpopulations.
引用
收藏
页码:356 / 367
页数:12
相关论文
共 57 条
[41]   PARALYTIC SHELLFISH POISONING WITH A GYMNODINIUM-CATENATUM RED TIDE ON THE PACIFIC COAST OF MEXICO [J].
MEE, LD ;
ESPINOSA, M ;
DIAZ, G .
MARINE ENVIRONMENTAL RESEARCH, 1986, 19 (01) :77-92
[42]  
NESBITT KA, 1995, HEREDITY, V74, P628, DOI 10.1038/hdy.1995.86
[43]  
Nesbitt KA, 1997, SILVAE GENET, V46, P6
[44]  
OSHIMA Y, 1993, DEV MAR BIO, V3, P907
[45]   COMPARATIVE-STUDY ON PARALYTIC SHELLFISH TOXIN PROFILES OF THE DINOFLAGELLATE GYMNODINIUM-CATENATUM FROM 3 DIFFERENT COUNTRIES [J].
OSHIMA, Y ;
BLACKBURN, SI ;
HALLEGRAEFF, GM .
MARINE BIOLOGY, 1993, 116 (03) :471-476
[46]  
SAKO Y, 1990, TOXIC MARINE PHYTOPLANKTON, P320
[47]  
SAUNDERS GW, 1997, PLANT SYST EVOL S, V11, P237
[48]   IDENTIFICATION OF GROUP-SPECIFIC AND STRAIN-SPECIFIC GENETIC-MARKERS FOR GLOBALLY DISTRIBUTED ALEXANDRIUM (DINOPHYCEAE) .2. SEQUENCE-ANALYSIS OF A FRAGMENT OF THE LSU RIBOSOMAL-RNA GENE [J].
SCHOLIN, CA ;
HERZOG, M ;
SOGIN, M ;
ANDERSON, DM .
JOURNAL OF PHYCOLOGY, 1994, 30 (06) :999-1011
[49]   IDENTIFICATION OF GROUP-SPECIFIC AND STRAIN-SPECIFIC GENETIC-MARKERS FOR GLOBALLY DISTRIBUTED ALEXANDRIUM (DINOPHYCEAE) .1. RFLP ANALYSIS OF SSU RIBOSOMAL-RNA GENES [J].
SCHOLIN, CA ;
ANDERSON, DM .
JOURNAL OF PHYCOLOGY, 1994, 30 (04) :744-754
[50]   Molecular evolution of the Alexandrium tamarense 'species complex' (Dinophyceae): Dispersal in the North American and West Pacific regions [J].
Scholin, CA ;
Hallegraeff, GM ;
Anderson, DM .
PHYCOLOGIA, 1995, 34 (06) :472-485