Role of calcium permeation in dihydropyridine receptor function - Insights into channel gating and excitation-contraction coupling

被引:57
作者
Dirksen, RT
Beam, KG [1 ]
机构
[1] Colorado State Univ, Coll Vet Med & Biomed Sci, Dept Anat & Neurobiol, Ft Collins, CO 80523 USA
[2] Univ Rochester, Dept Physiol & Pharmacol, Rochester, NY 14642 USA
关键词
voltage-dependant calcium channels; skeletal muscle; calcium transients; charge movement; ion channel;
D O I
10.1085/jgp.114.3.393
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The skeletal and cardiac muscle dihydropyridine receptors (DHPRs) differ with respect to their rates of channel activation and in the means by which they control Ca2+ release from the sarcoplasmic reticulum (Adams, B.A., and ICG. Beam. 1990. FASEB J. 4:2809-2816). We have examined the functional properties of skeletal (SkEIIIK) and cardiac (CEIIIK) DHPRs in which a highly conserved glutamate residue in the pore region of repeat III was mutated to a positively charged lysine residue. Using expression in dysgenic myotubes, we have characterized macroscopic ionic currents, intramembrane gating currents, and intracellular Ca2+ transients attributable to these two mutant DHPRs. CEIIIK supported very small inward Ca2+ currents at a few potentials (from -20 to +20 mV) and large out-ward cesium currents at potentials greater than +20 mV. SkEIIIK failed to support inward Ca2+ flux at any potential. However, large, slowly activating outward cesium currents were observed at all potentials greater than + 20 mV. The difference in skeletal and cardiac Ca2+ channel activation kinetics was conserved for outward currents through CEIIIK and SkEIIIK, even at very depolarized potentials (at +100 mV; SkEIIIK: tau(act) = 30.7 +/- 1.9 ms, n = 11; CEIIIK: tau(act) = 2.9 +/- 0.5 ms, n = 7). Expression of SkEIIIK in dysgenic myotubes restored both evoked contractions and depolarization-dependent intracellular Ca2+ transients with parameters of voltage dependence (V-0.5 = 6.5 +/- 3.2 mV and k = 9.3 +/- 0.7 mV, n = 5) similar to those for the wild-type DHPR (Garcia,J., T. Tanabe, and K.G. Beam. 1994. J. Ge n. Physiol. 103:125-147). However, CEIIIK-expressing myotubes never contracted and failed to exhibit depolarization-dependent intracellular Ca2+ transients at any potential. Thus, high Ca2+ permeation is required for cardiac-type excitation-contraction coupling reconstituted in dysgenic myotubes, but not skeletal-type. The strong rectification of the EIIIK channels made it possible to obtain measurements of gating currents upon repolarization to -50 mV (Q(off)) following either brief (20 ms) or long (200 ms) depolarizing pulses to various test potentials. For SkEIIIK, and not CEIIK, Q(off) was significantly (P < 0.001) larger after longer depolarizations to +60 mV (121.4 +/- 2.0%, n = 6). The increase in Q(off) for long depolarizations exhibited a voltage dependence similar to that of channel activation. Thus, the increase in Q(off) may reflect a voltage sensor movement required for activation of L-type Ca2+ current and suggests that most DHPRs in skeletal muscle undergo this voltage-dependent transition.
引用
收藏
页码:393 / 403
页数:11
相关论文
共 41 条
[1]   INTRAMEMBRANE CHARGE MOVEMENT RESTORED IN DYSGENIC SKELETAL-MUSCLE BY INJECTION OF DIHYDROPYRIDINE RECEPTOR CDNAS [J].
ADAMS, BA ;
TANABE, T ;
MIKAMI, A ;
NUMA, S ;
BEAM, KG .
NATURE, 1990, 346 (6284) :569-572
[2]   NON-SELECTIVE CONDUCTANCE IN CALCIUM CHANNELS OF FROG-MUSCLE - CALCIUM SELECTIVITY IN A SINGLE-FILE PORE [J].
ALMERS, W ;
MCCLESKEY, EW .
JOURNAL OF PHYSIOLOGY-LONDON, 1984, 353 (AUG) :585-608
[3]   TWITCHES IN PRESENCE OF ETHYLENE-GLYCOL BIS(BETA-AMINOETHYL ETHER)-N,N'-TETRAACETIC ACID [J].
ARMSTRONG, CM ;
BEZANILLA, FM ;
HOROWICZ, P .
BIOCHIMICA ET BIOPHYSICA ACTA, 1972, 267 (03) :605-+
[4]   Functional and structural approaches to the study of excitation-contraction coupling [J].
Beam, KG ;
FranziniArmstrong, C .
METHODS IN CELL BIOLOGY, VOL 52: METHODS IN MUSCLE BIOLOGY, 1997, 52 :283-306
[5]   CALCIUM CURRENTS IN EMBRYONIC AND NEONATAL MAMMALIAN SKELETAL-MUSCLE [J].
BEAM, KG ;
KNUDSON, CM .
JOURNAL OF GENERAL PHYSIOLOGY, 1988, 91 (06) :781-798
[6]  
CHANG CE, 1976, INT HEAT MASS TRANSF, V9, P355
[7]   Ion channel selectivity through stepwise changes in binding affinity [J].
Dang, TX ;
McCleskey, EW .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 111 (02) :185-193
[8]   Unitary behavior of skeletal, cardiac, and chimeric L-type Ca2+ channels expressed in dysgenic myotubes [J].
Dirksen, RT ;
Beam, KG .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 107 (06) :731-742
[9]   SINGLE CALCIUM-CHANNEL BEHAVIOR IN NATIVE SKELETAL-MUSCLE [J].
DIRKSEN, RT ;
BEAM, KG .
JOURNAL OF GENERAL PHYSIOLOGY, 1995, 105 (02) :227-247
[10]   Identification of the minimum essential region in the II-III loop of the dihydropyridine receptor α1 subunit required for activation of skeletal muscle-type excitation-contraction coupling [J].
El-Hayek, R ;
Ikemoto, N .
BIOCHEMISTRY, 1998, 37 (19) :7015-7020