Mild and cost-effective synthesis of iron fluoride-graphene nanocomposites for high-rate Li-ion battery cathodes

被引:87
作者
Liu, Jun [1 ,2 ]
Wan, Yanling [1 ]
Liu, Wei [1 ]
Ma, Zengsheng [1 ]
Ji, Shaomin [1 ,3 ]
Wang, Jinbing [1 ]
Zhou, Yichun [1 ]
Hodgson, Peter [2 ]
Li, Yuncang [2 ]
机构
[1] Xiangtan Univ, Minist Educ, Fac Mat Optoelect & Phys, Key Lab Low Dimens Mat & Applicat Technol, Xiangtan 411105, Peoples R China
[2] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3217, Australia
[3] Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
METAL FLUORIDES; PERFORMANCE; NANOSPHERES; PRECURSORS; ELECTRODES; ANODE;
D O I
10.1039/c2ta00823h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exploring high performance cathode materials is essential to realize the adoption of Li-ion batteries for application in electric vehicles and hybrid electric vehicles. FeF3, as a typical iron-based fluoride, has been attracting considerable interest due to both the high electromotive force value of 2.7 V and the high theoretical capacity of 237 mA h g(-1) (1e(-) transfer). In this study, we report a facile low-temperature solution phase approach for synthesis of uniform iron fluoride nanocrystals on reduced graphene sheets stably suspended in ethanol solution. The resulting hybrid of iron fluoride nanocrystals and graphene sheets showed high specific capacity and high rate performance for iron fluoride type cathode materials. High stable specific capacity of about 210 mA h g(-1) at a current density of 0.2 C was achieved, which is much higher than that of LiFePO4 cathode material. Notably, these iron fluoride/nanocomposite cathode materials demonstrated superior rate capability, with discharge capacities of 176, 145 and 113 mA h g(-1) at 1, 2 and 5 C, respectively.
引用
收藏
页码:1969 / 1975
页数:7
相关论文
共 36 条
[1]   Cathode performance and voltage estimation of metal trihalides [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :716-719
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries [J].
Badway, F ;
Cosandey, F ;
Pereira, N ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) :A1318-A1327
[4]   Carbon-metal fluoride nanocomposites -: Structure and electrochemistry of FeF3:C [J].
Badway, F ;
Pereira, N ;
Cosandey, F ;
Amatucci, GG .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :A1209-A1218
[5]   EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries [J].
Cosandey, Frederic ;
Al-Sharab, Jafar F. ;
Badway, Fadwa ;
Amatucci, Glenn G. ;
Stadelmann, Pierre .
MICROSCOPY AND MICROANALYSIS, 2007, 13 (02) :87-95
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[8]   Fabrication of FeF3 Nanoflowers on CNT Branches and Their Application to High Power Lithium Rechargeable Batteries [J].
Kim, Sung-Wook ;
Seo, Dong-Hwa ;
Gwon, Hyeokjo ;
Kim, Jongsoon ;
Kang, Kisuk .
ADVANCED MATERIALS, 2010, 22 (46) :5260-5264
[9]  
Lee YJ, 2009, SCIENCE, V324, P1051, DOI [10.1126/science.1169041, 10.1126/science.1171541]
[10]   Carbon Nanotube Wiring of Electrodes for High-Rate Lithium Batteries Using an Imidazolium-Based Ionic Liquid Precursor as Dispersant and Binder: A Case Study on Iron Fluoride Nanoparticles [J].
Li, Chilin ;
Gu, Lin ;
Tong, Jianwei ;
Maier, Joachim .
ACS NANO, 2011, 5 (04) :2930-2938