Several formulation approaches were attempted to improve the dissolution and the oral absorption of ER-34122, which is a novel dual 5-lipoxygenase/cyclooxygenase inhibitor with potent anti-inflammatory activity. The solid dispersion of ER-34122 with hydroxypropylmethylcellulose (TC-5RW), which is an inert solid carrier, resulted in a significant improvement in the dissolution rate of ER-34122. The solid dispersion was prepared by a solvent evaporation method using ethanol and water. The solid-state characteristics of the solid dispersion, the corresponding physical mixture, and ER-34122 alone were investigated by X-ray powder diffraction, Fourier transform infrared spectroscopy (FTIR), and an automated controlled-atmosphere microbalance. The X-ray powder diffraction patterns suggest that the solid dispersion exists in a totally amorphous state and the others exist in a crystalline state. The FTIR spectra results suggest that ER-34122 can interact with TC-5RW through intermolecular hydrogen bonding in the solid dispersion. This interaction may cause a stabilization of ER-34122 in the higher-energy, faster-dissolving amorphous state. The dissolution rate of ER-34122 from the solid dispersion was significantly greater than that from the physical mixture or the pure drug. Furthermore, when orally administrated to beagle dogs, ER-34122 showed about a 100-fold increase in both maximum concentration (C-max) and area under the curve of concentration versus time (AUC) compared with the pure drug. Consequently, it was determined that the solid dispersion technique with TC-5RW provides a promising way to increase the dissolution rate and the oral absorption of poorly water-soluble drugs such as ER-34122. (C) 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association.