Different extended ensemble schemes for non-Boltzmann sampling (NBS) of a selected reaction coordinate lambda were formulated so that they employ (i) "variable" sampling window schemes (that include the "successive umbrella sampling" method) to comprehensibly explore the lambda domain and (ii) transition matrix methods to iteratively obtain the underlying free-energy eta landscape (or "importance" weights) associated with lambda. The connection between "acceptance ratio" and transition matrix methods was first established to form the basis of the approach for estimating eta(lambda). The validity and performance of the different NBS schemes were then assessed using as lambda coordinate the configurational energy of the Lennard-Jones fluid. For the cases studied, it was found that the convergence rate in the estimation of eta is little affected by the use of data from high-order transitions, while it is noticeably improved by the use of a broader window of sampling in the variable window methods. Finally, it is shown how an "elastic" window of sampling can be used to effectively enact (nonuniform) preferential sampling over the lambda domain, and how to stitch the weights from separate one-dimensional NBS runs to produce a eta surface over a two-dimensional domain. (c) 2006 American Institute of Physics.