Origin of correlated activity between parasol retinal ganglion cells

被引:95
作者
Trong, Philipp Khuc [1 ]
Rieke, Fred [1 ]
机构
[1] Univ Washington, Howard Hughes Med Inst, Dept Physiol & Biophys, Seattle, WA 98195 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nn.2199
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cells throughout the CNS have synchronous activity patterns; that is, a cell's probability of generating an action potential depends both on its firing rate and on the occurrence of action potentials in surrounding cells. The mechanisms producing synchronous or correlated activity are poorly understood despite its prevalence and potential effect on neural coding. We found that neighboring parasol ganglion cells in primate retina received strongly correlated synaptic input in the absence of modulated light stimuli. This correlated variability appeared to arise through the same circuits that provide uncorrelated synaptic input. In addition, ON, but not OFF, parasol cells were coupled electrically. Correlated variability in synaptic input, however, dominated correlations in the parasol spike outputs and shared variability in the timing of action potentials generated by neighboring cells. These results provide a mechanistic picture of how correlated activity is produced in a population of neurons that are critical for visual perception.
引用
收藏
页码:1343 / 1351
页数:9
相关论文
共 44 条
[1]   Neural correlations, population coding and computation [J].
Averbeck, BB ;
Latham, PE ;
Pouget, A .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) :358-366
[2]   Synaptic input to OFF parasol ganglion cells in macaque retina [J].
Bordt, Andrea S. ;
Hoshi, Hideo ;
Yamada, Elizabeth S. ;
Perryman-Stout, Wendy C. ;
Marshak, David W. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2006, 498 (01) :46-57
[3]   MORPHOLOGICAL CLASSIFICATION OF BIPOLAR CELLS OF THE PRIMATE RETINA [J].
BOYCOTT, BB ;
WASSLE, H .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1991, 3 (11) :1069-1088
[4]   Mechanisms of concerted firing among retinal ganglion cells [J].
Brivanlou, IH ;
Warland, DK ;
Meister, M .
NEURON, 1998, 20 (03) :527-539
[5]  
Chichilnisky E. J., 1999, Society for Neuroscience Abstracts, V25, P1042
[6]   Functional asymmetries in ON and OFF ganglion cells of primate retina [J].
Chichilnisky, EJ ;
Kalmar, RS .
JOURNAL OF NEUROSCIENCE, 2002, 22 (07) :2737-2747
[7]   DENDRITIC FIELD SIZE AND MORPHOLOGY OF MIDGET AND PARASOL GANGLION-CELLS OF THE HUMAN RETINA [J].
DACEY, DM ;
PETERSEN, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (20) :9666-9670
[8]   A COUPLED NETWORK FOR PARASOL BUT NOT MIDGET GANGLION-CELLS IN THE PRIMATE RETINA [J].
DACEY, DM ;
BRACE, S .
VISUAL NEUROSCIENCE, 1992, 9 (3-4) :279-290
[9]   Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus [J].
Dan, Y ;
Alonso, JM ;
Usrey, WM ;
Reid, RC .
NATURE NEUROSCIENCE, 1998, 1 (06) :501-507
[10]   Correlation between neural spike trains increases with firing rate [J].
de la Rocha, Jaime ;
Doiron, Brent ;
Shea-Brown, Eric ;
Josic, Kresimir ;
Reyes, Alex .
NATURE, 2007, 448 (7155) :802-U6