Improved power factor of polyaniline nanocomposites with exfoliated graphene nanoplatelets (GNPs)

被引:97
作者
Abad, Begona [1 ]
Alda, Irene [1 ]
Diaz-Chao, Pablo [1 ]
Kawakami, Hiroshi [2 ]
Almarza, Albert [3 ]
Amantia, David [3 ]
Gutierrez, David [3 ]
Aubouy, Laurent [3 ]
Martin-Gonzalez, Marisol [1 ]
机构
[1] IMM Inst Microelect Madrid CNM CSIC, PTM, E-28760 Madrid, Spain
[2] NIMS Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[3] LEITAT Technol Ctr, Terrassa 08225, Spain
关键词
ENHANCED THERMOELECTRIC PROPERTIES; DIRECT-CURRENT CONDUCTIVITY; THERMOPOWER ENHANCEMENT; THERMAL-CONDUCTIVITY; SEEBECK COEFFICIENT; TRANSPORT; INCREASE; BEHAVIOR; FILMS;
D O I
10.1039/c3ta12105d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, exfoliated graphene nanoplatelets (GNPs)/polyaniline (PANI) nanocomposites have been prepared by sequential processing comprising: (i) a first aniline oxidative polymerization step under acidic conditions and (ii) mechanical blending with GNPs at different percentages. Thermoelectric pellets of the hybrid materials have been obtained at suitable circular geometry by means of cold pressing. Thermoelectric parameters have been determined at room temperature (electrical conductivity, Seebeck coefficient and thermal conductivity). Thermoelectric measurements show a drastic enhancement in both electrical conductivity and Seebeck coefficient with the addition of GNPs. A respectable maximum power factor value of 14 mu W m(-1) K-2 is reached for hybrid materials charged at 50 wt% GNP content, evidencing a 1000-fold enhancement with respect to the raw PANI polymer. The measured thermal conductivity is in the range of 0.5 W m(-1) K-1 for pure PANI to 3.3 W m(-1) K-1 for 50 wt% GNP content, which matches the parallel thermal resistor model for this nanocomposite.
引用
收藏
页码:10450 / 10457
页数:8
相关论文
共 57 条
[1]   ESTIMATION ON THERMAL-CONDUCTIVITIES OF FILLED POLYMERS [J].
AGARI, Y ;
UNO, T .
JOURNAL OF APPLIED POLYMER SCIENCE, 1986, 32 (07) :5705-5712
[2]   Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives [J].
Aich, Reda Badrou ;
Blouin, Nicolas ;
Bouchard, Angelique ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2009, 21 (04) :751-757
[3]   Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor [J].
Bounioux, Celine ;
Diaz-Chao, Pablo ;
Campoy-Quiles, Mariano ;
Martin-Gonzalez, Marisol S. ;
Goni, Alejandro R. ;
Yerushalmi-Rozene, Rachel ;
Mueller, Christian .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :918-925
[4]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[5]   THERMAL-CONDUCTIVITY OF POLYMERS [J].
CHOY, CL .
POLYMER, 1977, 18 (10) :984-1004
[6]   CHEMICAL PREPARATION, DIRECT-CURRENT CONDUCTIVITY AND THERMOPOWER OF POLYANILINE AND POLYPYRROLE COMPOSITES [J].
DALAS, E ;
SAKKOPOULOS, S ;
VITORATOS, E .
JOURNAL OF MATERIALS SCIENCE, 1994, 29 (15) :4131-4133
[7]   Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite [J].
Du, Yong ;
Shen, Shirley Z. ;
Yang, Weidong ;
Donelson, Richard ;
Cai, Kefeng ;
Casey, Philip S. .
SYNTHETIC METALS, 2012, 161 (23-24) :2688-2692
[8]  
GINDER JM, 1989, SYNTHETIC MET, V29, pE395, DOI 10.1016/0379-6779(89)90324-X
[9]   Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface [J].
He, Ming ;
Ge, Jing ;
Lin, Zhiqun ;
Feng, Xuhui ;
Wang, Xinwei ;
Lu, Hongbin ;
Yang, Yuliang ;
Qiu, Feng .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (08) :8351-8358
[10]   Thermopower enhancement in PbTe with pb precipitates [J].
Heremans, JP ;
Thrush, CM ;
Morelli, DT .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (06)