A method to compute the transition function of a piecewise deterministic Markov process with application to reliability

被引:19
作者
Chiquet, Julien [1 ]
Limnios, Nikolaos [1 ]
机构
[1] Univ Technol Compiegne, Lab Math Appl Compiegne, F-60206 Compiegne, France
关键词
D O I
10.1016/j.spl.2007.12.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the time evolution of an increasing stochastic process governed by a first-order stochastic differential system. This defines a particular piecewise deterministic Markov process (PDMP). We consider a Markov renewal process (MRP) associated to the PDMP and its Markov renewal equation (MRE) which is solved in order to obtain a closed-form solution of the transition function of the PDMP. It is then applied in the framework of survival analysis to evaluate the reliability function of a given system. We give a numerical illustration and we compare this analytical solution with the Monte Carlo estimator. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1397 / 1403
页数:7
相关论文
共 11 条
[1]  
[Anonymous], 1993, MONOGR STAT APPL PRO, DOI DOI 10.1201/9780203748039
[2]  
CHIQUET J, 2008, MATH METHOD IN PRESS
[3]   Estimating stochastic dynamical systems driven by a continuous-time jump Markov process [J].
Chiquet, Julien ;
Limnios, Nikolaos .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2006, 8 (04) :431-447
[4]  
DAVIS MHA, 1984, J ROY STAT SOC B MET, V46, P353
[5]   Probabilistic dynamics as a tool for dynamic PSA [J].
Devooght, J ;
Smidts, C .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 1996, 52 (03) :185-196
[6]  
Embrechts P, 2001, HANDB STAT, V19, P365, DOI 10.1016/S0169-7161(01)19014-0
[7]  
Jacobsen, 2006, PROB APPLIC
[8]  
Koroliuk VS, 2005, STOCHASTIC SYSTEMS IN MERGING PHASE SPACE, P1, DOI 10.1142/9789812703125
[9]  
Lapeyre B., 2003, INTRO MONTE CARLO ME
[10]  
Limnios N., 2001, An, Semi-Markov processes and reliability