Reconstitution of the mammalian DNA double-strand break end-joining reaction reveals a requirement for an Mre11/Rad50/NBS1-containing fraction

被引:105
作者
Huang, JR [1 ]
Dynan, WS [1 ]
机构
[1] Med Coll Georgia, Inst Mol Med & Genet, Program Gene Regulat, Augusta, GA 30912 USA
关键词
D O I
10.1093/nar/30.3.667
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The non-homologous end-joining pathway promotes direct enzymatic rejoining of DNA double-strand breaks (DSBs) and is an important determinant of genome stability in eukaryotic cells. Although previous work has shown that this pathway requires Ku, DNA-PKcs and the DNA ligase IV/XRCC4 complex, we found that these proteins alone did not promote efficient joining of cohesive-ended DNA fragments in a cell-free assay. To identify factors that were missing from the reaction, we screened fractions from HeLa cell extracts for the ability to stimulate the joining of cohesive DNA ends in a complementation assay containing other known proteins required for DNA DSB repair. We identified a factor that restored end-joining activity to the level observed in crude nuclear extracts. Factor activity copurified with Rad50, Mre11 and NBS1, three proteins that have previously been implicated in DSB repair by genetic and cytologic evidence. Factor activity was inhibited by anti-Mre11 antibody. The reconstituted system remained fully dependent on DNL IV/XRCC4 and at least partially dependent on Ku, but the requirement for DNA-PKcs was progressively lost as other components were purified. Results support a model where DNA-PKcs acts early in the DSB repair pathway to regulate progression of the reaction, and where Mre11, Rad50 and NBS1 play a key role in aligning DNA ends in a synaptic complex immediately prior to ligation.
引用
收藏
页码:667 / 674
页数:8
相关论文
共 75 条
[1]   DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes [J].
Bailey, SM ;
Meyne, J ;
Chen, DJ ;
Kurimasa, A ;
Li, GC ;
Lehnert, BE ;
Goodwin, EH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (26) :14899-14904
[2]   Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice [J].
Barnes, DE ;
Stamp, G ;
Rosewell, I ;
Denzel, A ;
Lindahl, T .
CURRENT BIOLOGY, 1998, 8 (25) :1395-1398
[3]   DNA end-joining catalyzed by human cell-free extracts [J].
Baumann, P ;
West, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (24) :14066-14070
[4]   Ku selectively transfers between DNA molecules with homologous ends [J].
Bliss, TM ;
Lane, DP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (09) :5765-5773
[5]   DEFECTIVE DNA-DEPENDENT PROTEIN-KINASE ACTIVITY IS LINKED TO V(D)J RECOMBINATION AND DNA-REPAIR DEFECTS ASSOCIATED WITH THE MURINE SCID MUTATION [J].
BLUNT, T ;
FINNIE, NJ ;
TACCIOLI, GE ;
SMITH, GCM ;
DEMENGEOT, J ;
GOTTLIEB, TM ;
MIZUTA, R ;
VARGHESE, AJ ;
ALT, FW ;
JEGGO, PA ;
JACKSON, SP .
CELL, 1995, 80 (05) :813-823
[6]   Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance [J].
Boulton, SJ ;
Jackson, SP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (23) :4639-4648
[7]   Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1996, 15 (18) :5093-5103
[8]   Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing [J].
Boulton, SJ ;
Jackson, SP .
EMBO JOURNAL, 1998, 17 (06) :1819-1828
[9]  
Bressan DA, 1998, GENETICS, V150, P591
[10]   The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response [J].
Carney, JP ;
Maser, RS ;
Olivares, H ;
Davis, EM ;
Le Beau, M ;
Yates, JR ;
Hays, L ;
Morgan, WF ;
Petrini, JHJ .
CELL, 1998, 93 (03) :477-486