Selective recognition of distinct classes of coactivators by a ligand-inducible activation domain

被引:49
作者
Acevedo, ML
Lee, KC
Stender, JD
Katzenellenbogen, BS
Kraus, WL [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Cornell Univ, Grad Field Biochem Mol & Cell Biol, Ithaca, NY 14853 USA
[3] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA
[5] Cornell Univ, Weill Med Coll, Dept Pharmacol, New York, NY 10021 USA
关键词
D O I
10.1016/S1097-2765(04)00121-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
How nuclear receptors (NRs) coordinate the sequential, ligand-dependent recruitment of multiple coactivator complexes (e.g., SRC complexes and Mediator) that share similar receptor binding determinants is unclear. We show that although the receptor binding subunits of these complexes (i.e., SRCs and Med220, respectively) share overlapping binding sites on estrogen receptor alpha (ERalpha), information contained in the receptor-coactivator interface allows the receptor to distinguish between them. In support of this conclusion, we have identified an ERalpha AF-2 point mutant (L540Q) that selectively binds and recruits Med220, but not SRCs, both in vitro and in vivo. In cells expressing this mutant, the recruitment of Med220 to the pS2 promoter is delayed, and the expression of the vast majority of estrogen target genes is impaired, suggesting a nearly global functional interdependence of these coactivators. Collectively, our results suggest that "facilitated recruitment," rather than competition, drives the sequential recruitment of SRC complexes and Mediator by NRs.
引用
收藏
页码:725 / 738
页数:14
相关论文
共 44 条
[1]   Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor α-dependent transcription with chromatin templates [J].
Acevedo, ML ;
Kraus, WL .
MOLECULAR AND CELLULAR BIOLOGY, 2003, 23 (01) :335-348
[2]   The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II [J].
Bhoite, LT ;
Yu, YX ;
Stillman, DJ .
GENES & DEVELOPMENT, 2001, 15 (18) :2457-2469
[3]   Independent recruitment in vivo by Gal4 of two complexes required for transcription [J].
Bryant, GO ;
Ptashne, M .
MOLECULAR CELL, 2003, 11 (05) :1301-1309
[4]   Functional interactions between the estrogen receptor and DRIP205, a subunit of the heteromeric DRIP coactivator complex [J].
Burakov, D ;
Wong, CW ;
Rachez, C ;
Cheskis, BJ ;
Freedman, LP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (27) :20928-20934
[5]   Reciprocal recruitment of DRIP/mediator and p160 coactivator complexes in vivo by estrogen receptor [J].
Burakov, D ;
Crofts, LA ;
Chang, CPB ;
Freedman, LP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (17) :14359-14362
[6]   Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase [J].
Chen, HW ;
Lin, RJ ;
Xie, W ;
Wilpitz, D ;
Evans, RM .
CELL, 1999, 98 (05) :675-686
[7]   IDENTIFICATION OF A CONSERVED REGION REQUIRED FOR HORMONE DEPENDENT TRANSCRIPTIONAL ACTIVATION BY STEROID-HORMONE RECEPTORS [J].
DANIELIAN, PS ;
WHITE, R ;
LEES, JA ;
PARKER, MG .
EMBO JOURNAL, 1992, 11 (03) :1025-1033
[8]   Structure and specificity of nuclear receptor-coactivator interactions [J].
Darimont, BD ;
Wagner, RL ;
Apriletti, JW ;
Stallcup, MR ;
Kushner, PJ ;
Baxter, JD ;
Fletterick, RJ ;
Yamamoto, KR .
GENES & DEVELOPMENT, 1998, 12 (21) :3343-3356
[9]   ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR in vitro [J].
Dilworth, FJ ;
Fromental-Ramain, C ;
Yamamoto, K ;
Chambon, P .
MOLECULAR CELL, 2000, 6 (05) :1049-1058
[10]   Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): Multiple motifs with different binding specificities [J].
Ding, XF ;
Anderson, CM ;
Ma, H ;
Hong, H ;
Uht, RM ;
Kushner, PJ ;
Stallcup, MR .
MOLECULAR ENDOCRINOLOGY, 1998, 12 (02) :302-313