Renormalization of modular invariant Coulomb gas and sine-Gordon theories, and the quantum Hall flow diagram

被引:6
作者
Carpentier, D [1 ]
机构
[1] Ecole Normale Super, Phys Theor Lab, F-75005 Paris, France
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 21期
关键词
D O I
10.1088/0305-4470/32/21/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the renormalization group (RG) we study two-dimensional electromagnetic Coulomb gas and extended sine-Gordon theories invariant under the modular group SL(2, Z). The flow diagram is established from the scaling equations, and we derive the critical behaviour at the various transition points of the diagram. Following the proposal for a SL(2,;Z) duality between different quantum Hall fluids, we discuss the analogy between this flow and the global quantum Hall phase diagram.
引用
收藏
页码:3865 / 3874
页数:10
相关论文
共 17 条
[1]   FIELD-THEORETICAL RENORMALIZATION AND FIXED-POINT STRUCTURE OF A GENERALIZED COULOMB GAS [J].
BOYANOVSKY, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (13) :2601-2614
[2]   PHASE-STRUCTURE OF ZP MODELS IN THE PRESENCE OF A THETA-PARAMETER [J].
CARDY, JL ;
RABINOVICI, E .
NUCLEAR PHYSICS B, 1982, 205 (01) :1-16
[3]   DUALITY AND THE THETA-PARAMETER IN ABELIAN LATTICE MODELS [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1982, 205 (01) :17-26
[4]  
CRISTOFANO G, 1998, CONDMAT9809344
[5]  
DOLAN B, 1998, CONDMAT9809294
[6]   Modular invariance, self-duality and the phase transition between quantum Hall plateaus [J].
Fradkin, E ;
Kivelson, S .
NUCLEAR PHYSICS B, 1996, 474 (03) :543-574
[7]   DISORDER VARIABLES AND PARA-FERMIONS IN TWO-DIMENSIONAL STATISTICAL-MECHANICS [J].
FRADKIN, E ;
KADANOFF, LP .
NUCLEAR PHYSICS B, 1980, 170 (01) :1-15
[8]  
GEORGELIN Y, 1997, J PHYS A, V30, P5075
[9]   LATTICE COULOMB GAS REPRESENTATIONS OF 2-DIMENSIONAL PROBLEMS [J].
KADANOFF, LP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (07) :1399-1417
[10]   MULTICRITICAL BEHAVIOR AT THE KOSTERLITZ-THOULESS CRITICAL-POINT [J].
KADANOFF, LP .
ANNALS OF PHYSICS, 1979, 120 (01) :39-71