Auxiliary-field quantum monte carlo study of TiO and MnO molecules

被引:40
作者
Al-Saidi, WA [1 ]
Krakauer, H [1 ]
Zhang, S [1 ]
机构
[1] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA
来源
PHYSICAL REVIEW B | 2006年 / 73卷 / 07期
关键词
D O I
10.1103/PhysRevB.73.075103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Calculations of the binding energy of the transition-metal oxide molecules TiO and MnO are presented, using a recently developed phaseless auxiliary-field quantum Monte Carlo approach. This method maps the interacting many-body problem onto a linear combination of noninteracting problems by a complex Hubbard-Stratonovich transformation, and controls the phase and sign problem with a phaseless approximation relying on a trial wave function. It employs random walks in Slater determinant space to project the ground state of the system, and allows use of much of the same machinery as in standard density functional theory calculations using the plane-wave basis and nonlocal pseudopotentials. The calculations used a single Slater determinant trial wave function obtained from a density functional calculation, with no further optimization. The calculated binding energies are in good agreement with experiment and with recent diffusion Monte Carlo results. Together with previous results for sp-bonded systems, the present study indicates that the phaseless auxiliary-field method is a robust and promising approach for the study of correlation effects in real materials.
引用
收藏
页数:7
相关论文
共 32 条
[1]  
ALBARET T, 1997, FARADAY DISCUSS, V106, P155
[2]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[3]   Issues and observations on applications of the constrained-path Monte Carlo method to many-fermion systems [J].
Carlson, J ;
Gubernatis, JE ;
Ortiz, G ;
Zhang, SW .
PHYSICAL REVIEW B, 1999, 59 (20) :12788-12798
[4]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[5]   Quantum Monte Carlo simulations of solids [J].
Foulkes, WMC ;
Mitas, L ;
Needs, RJ ;
Rajagopal, G .
REVIEWS OF MODERN PHYSICS, 2001, 73 (01) :33-83
[6]   First-principles computation of material properties: the ABINIT software project [J].
Gonze, X ;
Beuken, JM ;
Caracas, R ;
Detraux, F ;
Fuchs, M ;
Rignanese, GM ;
Sindic, L ;
Verstraete, M ;
Zerah, G ;
Jollet, F ;
Torrent, M ;
Roy, A ;
Mikami, M ;
Ghosez, P ;
Raty, JY ;
Allan, DC .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 25 (03) :478-492
[7]   Benchmark quantum Monte Carlo calculations [J].
Grossman, JC .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (04) :1434-1440
[8]   Relativistic separable dual-space Gaussian pseudopotentials from H to Rn [J].
Hartwigsen, C ;
Goedecker, S ;
Hutter, J .
PHYSICAL REVIEW B, 1998, 58 (07) :3641-3662
[9]   CALCULATION OF PARTITION FUNCTIONS [J].
HUBBARD, J .
PHYSICAL REVIEW LETTERS, 1959, 3 (02) :77-78
[10]  
Huber K. P., 1979, MOL SPECTRA MOL STRU