Efficient solution of liquid state integral equations using the Newton-GMRES algorithm

被引:20
作者
Booth, MJ
Schlijper, AG
Scales, LE
Haymet, ADJ
机构
[1] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[2] Unilever Res, Port Sunlight Lab, Fabr Washing Syst, Wirral L63 3JW, Merseyside, England
[3] Shell Res Ltd, Thornton Res Ctr, Chester CH1 3SH, Cheshire, England
[4] Univ Houston, Dept Chem, Houston, TX 77204 USA
基金
澳大利亚研究理事会;
关键词
Newton; Raphson; GMRES; Krylov; Ornstein; Zernike; numerical solution; nonlinear integral equation; inhomogeneous fluids;
D O I
10.1016/S0010-4655(99)00186-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present examples of the accurate, robust and efficient solution of Ornstein-Zernike type integral equations which describe the structure of both homogeneous and inhomogeneous fluids. In this work we use the Newton-GMRES algorithm as implemented in the public-domain nonlinear Krylov solvers NKSOL [P. Brown, Y. Saad, SIAM J. Sci. Stat. Comput. 11 (1990) 450] and NITSOL [M. Pernice, H.F. Walker, SIAM J. Sci. Comput. 19 (1998) 302]. We compare and contrast this method with more traditional approaches in the literature, using Picard iteration (successive-substitution) and hybrid Newton-Raphson and Picard methods, and a recent vector extrapolation method [H.H.H. Homeier, S. Rast, H. Krienke, Comput. Phys. Commun. 92 (1995) 188]. We find that both the performance and ease of implementation of these nonlinear solvers recommend them for the solution of this class of problem. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:122 / 134
页数:13
相关论文
共 45 条
[1]   NEW METHOD OF SOLVING THE HNC EQUATION FOR IONIC LIQUIDS [J].
ABERNETHY, GM ;
GILLAN, MJ .
MOLECULAR PHYSICS, 1980, 39 (04) :839-847
[2]   INTEGRAL EQUATIONS IN IONIC SOLUTION THEORY [J].
ALLNATT, AR .
MOLECULAR PHYSICS, 1964, 8 (06) :533-&
[3]   A FAST METHOD OF SOLVING THE HYPERNETTED-CHAIN EQUATION FOR MOLECULAR LENNARD-JONES FLUIDS [J].
ANTA, JA ;
LOMBA, E ;
MARTIN, C ;
LOMBARDERO, M ;
LADO, F .
MOLECULAR PHYSICS, 1995, 84 (04) :743-755
[4]  
Atkinson K., 1992, J. Int. Eqns. Appl., V4, P15
[5]  
Atkinson KE., 1996, NUMERICAL SOLUTION I
[6]  
BOOTH MJ, 1999, UNPUB MOL PHYS
[7]   Momentum distributions in He-3-He-4 liquid mixtures [J].
Boronat, J ;
Polls, A ;
Fabrocini, A .
PHYSICAL REVIEW B, 1997, 56 (18) :11854-11864
[8]   HYBRID KRYLOV METHODS FOR NONLINEAR-SYSTEMS OF EQUATIONS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (03) :450-481
[9]   Integral equation approximations for inhomogeneous fluids: functional optimization [J].
Bush, MR ;
Booth, MJ ;
Haymet, ADJ ;
Schlijper, AG .
MOLECULAR PHYSICS, 1998, 95 (03) :601-619
[10]   EFFICIENT NEWTON-RAPHSON AND IMPLICIT EULER METHODS FOR SOLVING THE HNC EQUATION [J].
BUSIGIN, A ;
PHILLIPS, CR .
MOLECULAR PHYSICS, 1992, 76 (01) :89-101