Regulation of the mitogen-activated protein kinase p44 ERK activity during anoxia/recovery in rainbow trout hypodermal fibroblasts

被引:16
作者
Ossum, CG [1 ]
Wulff, T [1 ]
Hoffmann, EK [1 ]
机构
[1] Univ Copenhagen, Inst Mol Biol & Physiol, Dept Biochem, DK-2100 Copenhagen O, Denmark
关键词
p38; MAPK; teleost; ROS; phosphatase; PP1; PP2A; calyculin A; hypoxia; recovery; SB203580;
D O I
10.1242/jeb.02152
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is well known from various mammalian cells that anoxia has a major impact on the mitogen-activated protein kinase ERK, but a possible similar effect in fish cells has not been investigated. Here we characterise a p44ERK-like protein in the rainbow trout cell line RTHDF and study the effect of (i) serum stimulation, (ii) sodium azide (chemical anoxia) and removal of azide (recovery) and (iii) anoxia (P-O2 < 0.1%) and recovery. During both chemical and true anoxia p44ERK was inhibited and recovery resulted in robust reactivation of p44ERK activity, far above the initial level. The inhibition was secondary to activation of p38(MAPK) and the increase was MEK dependent, as SB203580 inhibited the dephosphorylation during anoxia and the presence of PD98059 inhibited phosphorylation of p44ERK during recovery. In addition, we demonstrated that the reactivation of p44ERK during recovery also was dependent on reactive oxygen species and a PP1/PP2A-like phosphatase.
引用
收藏
页码:1765 / 1776
页数:12
相关论文
共 74 条
[1]   Mitochondrial ATP production is necessary for activation of the extracellular-signal-regulated kinases during ischaemia/reperfusion in rat myocyte-derived H9c2 cells [J].
Abas, L ;
Bogoyevitch, MA ;
Guppy, M .
BIOCHEMICAL JOURNAL, 2000, 349 (01) :119-126
[2]   Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation [J].
Abraham, D ;
Podar, K ;
Pacher, M ;
Kubicek, M ;
Welzel, N ;
Hemmings, BA ;
Dilworth, SM ;
Mischak, H ;
Kolch, W ;
Baccarini, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (29) :22300-22304
[3]   Oxidative stress activates extracellular signal-regulated kinases through Src and ras in cultured cardiac myocytes of neonatal rats [J].
Aikawa, R ;
Komuro, I ;
Yamazaki, T ;
Zou, YZ ;
Kudoh, S ;
Tanaka, M ;
Shiojima, I ;
Hiroi, Y ;
Yazaki, Y .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (07) :1813-1821
[4]   INACTIVATION OF P42 MAP KINASE BY PROTEIN PHOSPHATASE 2A AND A PROTEIN-TYROSINE-PHOSPHATASE, BUT NOT CL100, IN VARIOUS CELL-LINES [J].
ALESSI, DR ;
GOMEZ, N ;
MOORHEAD, C ;
LEWIS, T ;
KEYSE, SM ;
COHEN, P .
CURRENT BIOLOGY, 1995, 5 (03) :283-295
[5]   Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK [J].
Allan, LA ;
Morrice, N ;
Brady, S ;
Magee, G ;
Pathak, S ;
Clarke, PR .
NATURE CELL BIOLOGY, 2003, 5 (07) :647-U45
[6]   Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1 [J].
Arnold, RS ;
Shi, J ;
Murad, E ;
Whalen, AM ;
Sun, CQ ;
Polavarapu, R ;
Parthasarathy, S ;
Petros, JA ;
Lambeth, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (10) :5550-5555
[7]   NADPH oxidase: An update [J].
Babior, BM .
BLOOD, 1999, 93 (05) :1464-1476
[8]   The c-Jun N-terminal protein kinase family of mitogen-activated protein kinases (JNK MAPKs) [J].
Barr, RK ;
Bogoyevitch, MA .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2001, 33 (11) :1047-1063
[9]   Hypoxia activates β1-integrin via ERK 1/2 and p38 MAP kinase in human vascular smooth muscle cells [J].
Blaschke, F ;
Stawowy, P ;
Goetze, S ;
Hintz, O ;
Gräfe, M ;
Kintscher, U ;
Fleck, E ;
Graf, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 296 (04) :890-896
[10]   Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart - p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion [J].
Bogoyevitch, MA ;
GillespieBrown, J ;
Ketterman, AJ ;
Fuller, SJ ;
BenLevy, R ;
Ashworth, A ;
Marshall, CJ ;
Sugden, PH .
CIRCULATION RESEARCH, 1996, 79 (02) :162-173