Modulation of the Escherichia coli sigma(E) (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins

被引:282
作者
Missiakas, D
Mayer, MP
Lemaire, M
Georgopoulos, C
Raina, S
机构
[1] CTR MED UNIV GENEVA, DEPT BIOCHIM MED, CH-1211 GENEVA 4, SWITZERLAND
[2] CNR, LIDSM, F-13402 MARSEILLE 20, FRANCE
关键词
D O I
10.1046/j.1365-2958.1997.3601713.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The sigma(E) (RpoE) transcription factor of Escherichia coli regulates the expression of genes whose products are devoted to extracytoplasmic activities. The sigma(E) regulon is induced upon misfolding of proteins in the periplasm or the outer membrane. Similar to other alternative sigma factors, the activity of sigma(E) is tightly regulated in E. coli. We have previously shown that sigma(E) is positively autoregulated at the transcriptional level. DNA sequencing, coupled with transcriptional analyses, have shown that sigma(E) is encoded by the first gene of a four-gene operon. The second gene of this operon, rseA, encodes an anti-sigma(E) activity. This was demonstrated at both the genetic and biochemical levels. For example, mutations in rseA constitutively increase sigma(E) activity. Consistent with this, overproduction of RseA leads to an inhibitory effect on sigma(E) activity. Topological analysis of RseA suggests the existence of one transmembrane domain, with the N-terminal part localized in the cytoplasm. Overproduction of this N-terminal domain atone was shown to inhibit sigma(E) activity. These observations were confirmed in vitro, because either purified RseA or only its purified N-terminal domain inhibited transcription from E sigma(E)-dependent promoters. Furthermore, RseA and sigma(E) co-purify, and can be co-immunoprecipitated, and chemically cross-linked. The sigma(E) activity is further modulated by the products of the remaining genes in this operon, rseB and rseC. RseB is a periplasmic protein, which negatively regulates sigma(E) activity and specifically interacts with the C-terminal periplasmic domain of RseA. In contrast, RseC is an inner membrane protein that positively modulates sigma(E) activity. Most of these protein-protein interactions were verified in vivo using the yeast two-hybrid system.
引用
收藏
页码:355 / 371
页数:17
相关论文
共 51 条
[1]   AN ADENOSINE NUCLEOTIDE SWITCH CONTROLLING THE ACTIVITY OF A CELL-TYPE-SPECIFIC TRANSCRIPTION FACTOR IN BACILLUS-SUBTILIS [J].
ALPER, S ;
DUNCAN, L ;
LOSICK, R .
CELL, 1994, 77 (02) :195-205
[2]  
[Anonymous], 1996, ESCHERICHIA COLI SAL
[3]  
Bartel P, 1993, CELLULAR INTERACTION, P153
[4]   THE ROLE OF ANTI-SIGMA FACTORS IN GENE-REGULATION [J].
BROWN, KL ;
HUGHES, KT .
MOLECULAR MICROBIOLOGY, 1995, 16 (03) :397-404
[5]   PROCEDURE FOR RAPID, LARGE-SCALE PURIFICATION OF ESCHERICHIA-COLI DNA-DEPENDENT RNA-POLYMERASE INVOLVING POLYMIN-P PRECIPITATION AND DNA-CELLULOSE CHROMATOGRAPHY [J].
BURGESS, RR ;
JENDRISAK, JJ .
BIOCHEMISTRY, 1975, 14 (21) :4634-4638
[6]   TRANSPOSITION AND FUSION OF LAC GENES TO SELECTED PROMOTERS IN ESCHERICHIA-COLI USING BACTERIOPHAGE-LAMBDA AND BACTERIOPHAGE-MU [J].
CASADABAN, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 104 (03) :541-555
[7]   PROTEIN-INTERACTION CLONING IN YEAST - IDENTIFICATION OF MAMMALIAN PROTEINS THAT REACT WITH THE LEUCINE ZIPPER OF JUN [J].
CHEVRAY, PM ;
NATHANS, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :5789-5793
[8]   AN RPOE-LIKE LOCUS CONTROLS OUTER-MEMBRANE PROTEIN-SYNTHESIS AND GROWTH AT COLD TEMPERATURES AND HIGH-PRESSURES IN THE DEEP-SEA BACTERIUM PHOTOBACTERIUM SP STRAIN SS9 [J].
CHI, E ;
BARTLETT, DH .
MOLECULAR MICROBIOLOGY, 1995, 17 (04) :713-726
[9]   ESCHERICHIA-COLI ALKALINE-PHOSPHATASE FAILS TO ACQUIRE DISULFIDE BONDS WHEN RETAINED IN THE CYTOPLASM [J].
DERMAN, AI ;
BECKWITH, J .
JOURNAL OF BACTERIOLOGY, 1991, 173 (23) :7719-7722
[10]   ROLE OF INTERACTIONS BETWEEN SPOIIAA AND SPOIIAB IN REGULATING CELL-SPECIFIC TRANSCRIPTION FACTOR SIGMA(F) OF BACILLUS-SUBTILIS [J].
DIEDERICH, B ;
WILKINSON, JF ;
MAGNIN, T ;
NAJAFI, SMA ;
ERRINGTON, J ;
YUDKIN, MD .
GENES & DEVELOPMENT, 1994, 8 (21) :2653-2663