Control of nonlinear systems with friction

被引:41
作者
Hirschorn, RM [1 ]
Miller, G
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Celest Inc, Dept Ind Engn, N York, ON M3C 1V7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
friction observers; Lyapunov stability; nonlinear systems;
D O I
10.1109/87.784422
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce a new continuous dynamic controller for a class of nonlinear systems which includes mechanical system models with a bristle model for nonlinear friction effects. We obtain sufficient conditions for global stabilization using an estimate for bristle defection and present experimental results illustrating the benefits of our dynamic controller in the regulation of a high-speed linear positioning table.
引用
收藏
页码:588 / 595
页数:8
相关论文
共 12 条
[1]  
AMIN J, 1997, IEEE CONTR S MAG AUG
[2]  
ARMSTRONGHELOUV.B, 1994, AUTOMATICA, V7
[3]  
ARMSTRONGHELOUV.B, 1991, CONTROL MACHINES FRI
[4]  
DEWIT PC, 1991, INT J ROBOT RES, V10
[5]  
DEWIT PCC, 1995, IEEE T CONTR SYST TE, V2
[6]  
ISIDORI A, 1990, IEEE T AUTOMAT CONTR, V35
[7]  
LASALLE JP, 1968, J DIFFERENTIAL EQUAT, V4
[8]   DYNAMIC OUTPUT-FEEDBACK REGULATION FOR A CLASS OF NONLINEAR-SYSTEMS [J].
POMET, JB ;
HIRSCHORN, RM ;
CEBUHAR, WA .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1993, 6 (02) :106-124
[9]  
PRALY L, 1991, LECT NOTES CONTR INF, V160, P347
[10]  
TATARYN PD, 1996, CONTR ENG PRACTICE, V4