A Naive Bayesian Cloud-Detection Scheme Derived from CALIPSO and Applied within PATMOS-x

被引:163
作者
Heidinger, Andrew K. [1 ]
Evan, Amato T. [2 ]
Foster, Michael J. [3 ]
Walther, Andi [3 ]
机构
[1] NOAA, NESDIS, Ctr Satellite Applicat & Res, Madison, WI 53706 USA
[2] Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
[3] Univ Wisconsin, Cooperat Inst Meteorol Satellite Studies, Madison, WI USA
关键词
SURFACE TEMPERATURE RETRIEVAL; PART I; MODIS; RADIANCES; MASK;
D O I
10.1175/JAMC-D-11-02.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The naive Bayesian methodology has been applied to the challenging problem of cloud detection with NOAA's Advanced Very High Resolution Radiometer (AVHRR). An analysis of collocated NOAA-18/AVHRR and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations was used to automatically and globally derive the Bayesian classifiers. The resulting algorithm used six Bayesian classifiers computed separately for seven surface types. Relative to CALIPSO, the final results show a probability of correct detection of roughly 90% over water, deserts, and snow-free land; 82% over the Arctic; and below 80% over the Antarctic. This technique is applied within the NOAA Pathfinder Atmosphere's Extended (PATMOS-x) climate dataset and the Clouds from AVHRR Extended (CLAVR-x) real-time product generation system. Comparisons of the PATMOS-x results with those from International Satellite Cloud Climatology Project (ISCCP) and Moderate Resolution Imaging Spectroradiometer (MODIS) indicate close agreement with zonal mean differences in cloud amount being less than 5% over most zones. Most areas of difference coincided with regions where the Bayesian cloud mask reported elevated uncertainties. The ability to report uncertainties is a critical component of this approach.
引用
收藏
页码:1129 / 1144
页数:16
相关论文
共 23 条
[1]   Cloud detection with MODIS. Part II: Validation [J].
Ackerman, S. A. ;
Holz, R. E. ;
Frey, R. ;
Eloranta, E. W. ;
Maddux, B. C. ;
McGill, M. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (07) :1073-1086
[2]  
Foster M. J., 2010, B AM METEOROL SOC, V91, pS34
[3]   Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for collection 5 [J].
Frey, Richard A. ;
Ackerman, Steven A. ;
Liu, Yinghui ;
Strabala, Kathleen I. ;
Zhang, Hong ;
Key, Jeffrey R. ;
Wang, Xuangi .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2008, 25 (07) :1057-1072
[4]  
Heidinger A., 2011, ABI CLOUD MASK NOAA
[5]   Deriving an inter-sensor consistent calibration for the AVHRR solar reflectance data record [J].
Heidinger, Andrew K. ;
Straka, William C., III ;
Molling, Christine C. ;
Sullivan, Jerry T. ;
Wu, Xiangqian .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (24) :6493-6517
[6]  
Kalnay E, 1996, B AM METEOROL SOC, V77, P437, DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO
[7]  
2
[8]   An Objective Model for Identifying Secondary Eyewall Formation in Hurricanes [J].
Kossin, James P. ;
Sitkowski, Matthew .
MONTHLY WEATHER REVIEW, 2009, 137 (03) :876-892
[9]   Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval [J].
Merchant, CJ ;
Harris, AR ;
Maturi, E ;
MacCallum, S .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (611) :2735-2755
[10]   Cloud Detection in Nonpolar Regions for CERES Using TRMM VIRS and Terra and Aqua MODIS Data [J].
Minnis, Patrick ;
Trepte, Qing Z. ;
Sun-Mack, Szedung ;
Chen, Yan ;
Doelling, David R. ;
Young, David F. ;
Spangenberg, Douglas A. ;
Miller, Walter F. ;
Wielicki, Bruce A. ;
Brown, Ricky R. ;
Gibson, Sharon C. ;
Geier, Erika B. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (11) :3857-3884