A note on least absolute deviation estimation of a threshold model

被引:29
作者
Caner, M [1 ]
机构
[1] Univ Pittsburgh, Dept Econ, Pittsburgh, PA 15260 USA
关键词
D O I
10.1017/S0266466602183113
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper develops the limit law for the least absolute deviation estimator of the threshold parameter in linear regression. In this respect, we extend the literature of threshold models. The existing literature considers only the least squares estimation of the threshold parameter (see Chun, 1993, Annals of Statistics 21, 520533; Hansen, 2000, Econometrica 68, 575-605). This result is useful because in the case of heavy-tailed errors there is an efficiency loss resulting from the use of least squares. Also, for the first time in the literature, we derive the limit law for the likelihood ratio test for the threshold parameter using the least absolute deviation technique.
引用
收藏
页码:800 / 814
页数:15
相关论文
共 22 条
[1]  
ALTISSIMO F, 1996, PERSISTENCE NONLINEA
[2]   LEAST ABSOLUTE DEVIATION ESTIMATION OF A SHIFT [J].
BAI, JS .
ECONOMETRIC THEORY, 1995, 11 (03) :403-436
[3]   MINIMUM OF AN ADDITIVE PROCESS WITH APPLICATIONS TO SIGNAL ESTIMATION AND STORAGE THEORY [J].
BHATTACHARYA, PK ;
BROCKWELL, PJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 37 (01) :51-75
[4]  
Billingsley P, 1968, CONVERGE PROBAB MEAS
[5]   CHANGES IN THE UNITED-STATES WAGE STRUCTURE 1963-1987 - APPLICATION OF QUANTILE REGRESSION [J].
BUCHINSKY, M .
ECONOMETRICA, 1994, 62 (02) :405-458
[6]  
CANER M, 1999, UNPUB LEAST ABSOLUTE
[8]  
Chen CWS., 1995, J Time Ser Anal, V16, P483, DOI [10.1111/j.1467-9892.1995.tb00248.x, DOI 10.1111/J.1467-9892.1995.TB00248.X]
[9]  
GYORFI L, 1990, NONPARAMETRIC CURVE
[10]   Sample splitting and threshold estimation [J].
Hansen, BE .
ECONOMETRICA, 2000, 68 (03) :575-603