FTIR study of the photoinduced processes of plant phytochrome phyA using isotope-labeled bilins and density functional theory calculations

被引:31
作者
Schwinte, Pascale [1 ]
Foerstendorf, Harald
Hussain, Zakir [2 ]
Gartner, Wolfgang [2 ]
Mroginski, Maria-Andrea [3 ]
Hildebrandt, Peter [3 ]
Siebert, Friedrich [1 ]
机构
[1] Univ Freiburg, Sekt Biophys, Inst Mol Med & Zellforsch, D-79104 Freiburg, Germany
[2] Max Planck Inst Bioanorgan Chem, Mulheim adR, Mulheim, Germany
[3] Tech Univ Berlin, Inst Chem, Berlin, Germany
关键词
D O I
10.1529/biophysj.108.131441
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Fourier transform infrared spectroscopy was used to analyze the chromophore structure in the parent states Pr and Pfr of plant phytochrome phyA and the respective photoproducts lumi-R and lumi-F. The spectra were obtained from phyA adducts assembled with either uniformly or selectively isotope-labeled phytochromobilin and phycocyanobilin. The interpretation of the experimental spectra is based on the spectra of chromophore models calculated by density functional theory. Global C-13-labeling of the tetrapyrrole allows for the discrimination between chromophore and protein bands in the Fourier transform infrared difference spectra. All infrared difference spectra display a prominent difference band attributable to a stretching mode with large contributions from the methine bridge between the inner pyrrole rings (B-C stretching). Due to mode coupling, frequencies and isotopic shifts of this mode suggest that the Pr chromophore may adopt a distorted ZZZssa or ZZZasa geometry with a twisted A-B methine bridge. The transition to lumi-R is associated with only minor changes of the amide I bands indicating limited protein structural changes during the isomerization site of the C-D methine bridge. Major protein structural changes occur upon the transition to Pfr in which the chromophore adopts a ZZEssa or ZZEasa-like state. In addition, specific interactions with the protein alter the structure of the B-C methine bridge as concluded from the substantial downshift of the respective stretching mode. These interactions are removed during the photoreaction to lumi-F (ZZE -> ZZZ), which involves only small protein structural changes.
引用
收藏
页码:1256 / 1267
页数:12
相关论文
共 58 条
[1]   QUANTITATIVE STUDIES OF THE STRUCTURE OF PROTEINS IN SOLUTION BY FOURIER-TRANSFORM INFRARED-SPECTROSCOPY [J].
ARRONDO, JLR ;
MUGA, A ;
CASTRESANA, J ;
GONI, FM .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1993, 59 (01) :23-56
[2]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[3]   Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore [J].
Bhoo, SH ;
Davis, SJ ;
Walker, J ;
Karniol, B ;
Vierstra, RD .
NATURE, 2001, 414 (6865) :776-779
[4]   Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore [J].
Borucki, B ;
von Stetten, D ;
Seibeck, S ;
Lamparter, T ;
Michael, N ;
Mroginski, MA ;
Otto, H ;
Murgida, DH ;
Heyn, MP ;
Hildebrandt, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (40) :34358-34364
[5]   Light, phytochrome signalling and photomorphogenesis in Arabidopsis [J].
Casal, JJ ;
Luccioni, LG ;
Oliverio, KA ;
Boccalandro, HE .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2003, 2 (06) :625-636
[6]   Characterization of the requirements for localization of phytochrome B to nuclear bodies [J].
Chen, M ;
Schwabb, R ;
Chory, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (24) :14493-14498
[7]   Phytochrome signalling is mediated through nucleoside diphosphate kinase 2 [J].
Choi, G ;
Yi, H ;
Lee, J ;
Kwon, YK ;
Soh, MS ;
Shin, BC ;
Luka, Z ;
Hahn, TR ;
Song, PS .
NATURE, 1999, 401 (6753) :610-613
[8]  
CORNEJO J, 1992, J BIOL CHEM, V267, P14790
[9]  
EILFELD P, 1985, Z NATURFORSCH C, V40, P109
[10]  
ELICH TD, 1989, J BIOL CHEM, V264, P12902