Downscaling Extremes-An Intercomparison of Multiple Statistical Methods for Present Climate

被引:144
作者
Buerger, G. [1 ]
Murdock, T. Q. [1 ]
Werner, A. T. [1 ]
Sobie, S. R. [1 ]
Cannon, A. J. [2 ]
机构
[1] Univ Victoria, PCIC, Victoria, BC V8W 3R4, Canada
[2] Environm Canada, Vancouver, BC, Canada
关键词
WATER-RESOURCES; DAILY TEMPERATURE; CHANGE SCENARIOS; CHANGE IMPACTS; UNITED-STATES; RIVER-BASIN; PRECIPITATION; MODEL; HYDROLOGY; SIMULATIONS;
D O I
10.1175/JCLI-D-11-00408.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Five statistical downscaling methods [automated regression-based statistical downscaling (ASD), bias correction spatial disaggregation (BCSD), quantile regression neural networks (QRNN), TreeGen (TG), and expanded downscaling (XDS)] are compared with respect to representing climatic extremes. The tests are conducted at six stations from the coastal, mountainous, and taiga region of British Columbia, Canada, whose climatic extremes are measured using the 27 Climate Indices of Extremes (ClimDEX; http://www.climdcx.org/climdex/index.action) indices. All methods are calibrated from data prior to 1991, and tested against the two decades from 1991 to 2010. A three-step testing procedure is used to establish a given method as reliable for any given index. The first step analyzes the sensitivity of a method to actual index anomalies by correlating observed and NCEP-downscaled annual index values; then, whether the distribution of an index corresponds to observations is tested. Finally, this latter test is applied to a downscaled climate simulation. This gives a total of 486 single and 162 combined tests. The temperature-related indices pass about twice as many tests as the precipitation indices, and temporally more complex indices that involve consecutive days pass none of the combined tests. With respect to regions, there is some tendency of better performance at the coastal and mountaintop stations. With respect to methods, XDS performed best, on average, with 19% (48%) of passed combined (single) tests, followed by BCSD and QRNN with 10% (45%) and 10% (31%), respectively, ASD with 6% (23%), and TO with 4% (21%) of passed tests. Limitations of the testing approach and possible consequences for the downscaling of extremes in these regions are discussed.
引用
收藏
页码:4366 / 4388
页数:23
相关论文
共 80 条
  • [1] Variability in simulated recharge using different GCMs
    Allen, D. M.
    Cannon, A. J.
    Toews, M. W.
    Scibek, J.
    [J]. WATER RESOURCES RESEARCH, 2010, 46
  • [2] [Anonymous], SCEN DAT ATM ENV
  • [3] [Anonymous], 1998, Statistical shape analysis
  • [4] [Anonymous], 2004, GUIDELINES USE CLIMA
  • [5] [Anonymous], 1958, Some Applications of Statistics to Meteorology
  • [6] [Anonymous], DOD NEWS BRIEF SECR
  • [7] [Anonymous], 2007, Eos Transactions, American Geophysical Union, DOI DOI 10.1029/2007EO470006
  • [8] [Anonymous], LECT NOTES COMPUTER
  • [9] Downscaling precipitation extremes
    Benestad, Rasmus E.
    [J]. THEORETICAL AND APPLIED CLIMATOLOGY, 2010, 100 (1-2) : 1 - 21
  • [10] Rainfall-runoff modelling for assessing impacts of climate and land-use change
    Bronstert, A
    [J]. HYDROLOGICAL PROCESSES, 2004, 18 (03) : 567 - 570