Absolute extinction cross-section of individual magnetic split-ring resonators

被引:97
作者
Husnik, Martin [1 ]
Klein, Matthias W. [1 ]
Feth, Nils [1 ,2 ]
Koenig, Michael [3 ]
Niegemann, Jens [3 ]
Busch, Kurt [2 ,3 ]
Linden, Stefan [1 ,2 ]
Wegener, Martin [1 ,2 ]
机构
[1] Univ Karlsruhe TH, Inst Angew Phys, D-76131 Karlsruhe, Germany
[2] Forschungszentrum Karlsruhe Helmholtz Gemeinschaf, Inst Nanotechnol, D-76131 Karlsruhe, Germany
[3] Univ Karlsruhe TH, Inst Theoret Festkorperphys, D-76131 Karlsruhe, Germany
关键词
D O I
10.1038/nphoton.2008.181
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Complete control of an electromagnetic wave requires access to its electric and magnetic vector components. Realizing this level of control with metamaterials has recently opened new avenues regarding negative refractive indices(1,2) and invisibility cloaking(3,4). The required microscopic building blocks are artificial electric and magnetic dipoles. Magnetic dipoles oscillating at optical frequencies have become available only recently in the form of man-made split-ring resonators(5), essentially subwavelength resonant electromagnets. Previous experimental work has focused on arrays of electric and/or magnetic dipoles(1,2,6,7). For further developments in this field, knowledge of the properties of the individual dipoles is highly desirable. In this paper, using a modulation technique(8,9), we measure the absolute extinction cross-section of a single split-ring resonator for the first time. At the fundamental magnetic resonance, it is found to be about one-seventh of lambda(2) at a wavelength of lambda = 1.4 mu m, which is in excellent agreement with microscopic calculations.
引用
收藏
页码:614 / 617
页数:4
相关论文
共 20 条
[1]   Direct measurement of the single-metal-cluster optical absorption -: art. no. 127401 [J].
Arbouet, A ;
Christofilos, D ;
Del Fatti, N ;
Vallée, F ;
Huntzinger, JR ;
Arnaud, L ;
Billaud, P ;
Broyer, M .
PHYSICAL REVIEW LETTERS, 2004, 93 (12) :127401-1
[2]  
Bohren C. F., 1983, ABSORPTION SCATTERIN
[3]   Periodic nanostructures for photonics [J].
Busch, K. ;
von Freymann, G. ;
Linden, S. ;
Mingaleev, S. F. ;
Tkeshelashvili, L. ;
Wegener, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 444 (3-6) :101-202
[4]   Observation of magnetization waves in negative-index photonic metamaterials [J].
Dolling, G. ;
Wegener, M. ;
Schaedle, A. ;
Burger, S. ;
Linden, S. .
APPLIED PHYSICS LETTERS, 2006, 89 (23)
[5]   Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials [J].
Engheta, Nader .
SCIENCE, 2007, 317 (5845) :1698-1702
[6]   Magnetic metamaterials at telecommunication and visible frequencies [J].
Enkrich, C ;
Wegener, M ;
Linden, S ;
Burger, S ;
Zschiedrich, L ;
Schmidt, F ;
Zhou, JF ;
Koschny, T ;
Soukoulis, CM .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[7]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379
[8]   Magnetic response of metamaterials at 100 terahertz [J].
Linden, S ;
Enkrich, C ;
Wegener, M ;
Zhou, JF ;
Koschny, T ;
Soukoulis, CM .
SCIENCE, 2004, 306 (5700) :1351-1353
[9]   Three-dimensional photonic metamaterials at optical frequencies [J].
Liu, Na ;
Guo, Hongcang ;
Fu, Liwei ;
Kaiser, Stefan ;
Schweizer, Heinz ;
Giessen, Harald .
NATURE MATERIALS, 2008, 7 (01) :31-37
[10]   Lorentz model for metamaterials: Optical frequency resonance circuits [J].
Meyrath, T. P. ;
Zentgraf, T. ;
Giessen, H. .
PHYSICAL REVIEW B, 2007, 75 (20)