Estimation of copula-based semiparametric time series models

被引:228
作者
Chen, XH
Fan, YQ
机构
[1] NYU, Dept Econ, New York, NY 10003 USA
[2] Vanderbilt Univ, Dept Econ, Nashville, TN 37235 USA
关键词
copula; nonlinear Markov models; semiparametric estimation; conditional moment; conditional quantile;
D O I
10.1016/j.jeconom.2005.03.004
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric marginal distributions and parametric copula functions, while the copulas capture all the scale-free temporal dependence of the processes. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic properties are established under easily verifiable conditions. These results are used to obtain root-n consistent and asymptotically normal estimators of important features of the transition distribution such as the (nonlinear) conditional moments and conditional quantiles. The semiparametric conditional quantile estimators are automatically monotonic across quantiles, which is attractive for portfolio conditional value-at-risk calculations. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 335
页数:29
相关论文
共 54 条
[1]   Testing when a parameter is on the boundary of the maintained hypothesis [J].
Andrews, DWK .
ECONOMETRICA, 2001, 69 (03) :683-734
[2]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858
[3]  
[Anonymous], 1991, PROC 5 INT S EC THEO
[4]  
Bickel Peter J, 1993, Efficient and adaptive estimation for semiparametric models, V4
[5]  
BOUYE E, 2002, UNPUB DYNAMIC COPULA
[6]  
BOUYE E, 2002, UNPUB INVESTIGATING
[7]  
BRADLEY RC, 1986, DEPENDENCE PROBABILI, P165
[8]  
CHEN X, 2003, UNPUB SIMPLE TESTS M
[9]  
CHEN X, 2004, IN PRESS CANADIAN J
[10]  
CHEN X, 2004, FINANC RES LETT, V1, P74