Bi-Scale Appearance Fabrication

被引:55
作者
Lan, Yanxiang [1 ]
Dong, Yue
Pellacini, Fabio [2 ,3 ]
Tong, Xin
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Dartmouth Coll, Hanover, NH 03755 USA
[3] Univ Roma La Sapienza, Rome, Italy
来源
ACM TRANSACTIONS ON GRAPHICS | 2013年 / 32卷 / 04期
关键词
fabrication; bi-scale; SVBRDF; local frame; normal map;
D O I
10.1145/2461912.2461989
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Surfaces in the real world exhibit complex appearance due to spatial variations in both their reflectance and local shading frames (i.e. the local coordinate system defined by the normal and tangent direction). For opaque surfaces, existing fabrication solutions can reproduce well only the spatial variations of isotropic reflectance. In this paper, we present a system for fabricating surfaces with desired spatially-varying reflectance, including anisotropic ones, and local shading frames. We approximate each input reflectance, rotated by its local frame, as a small patch of oriented facets coated with isotropic glossy inks. By assigning different ink combinations to facets with different orientations, this bi-scale material can reproduce a wider variety of reflectance than the printer gamut, including anisotropic materials. By orienting the facets appropriately, we control the local shading frame. We propose an algorithm to automatically determine the optimal facets orientations and ink combinations that best approximate a given input appearance, while obeying manufacturing constraints on both geometry and ink gamut. We fabricate the resulting surface with commercially available hardware, a 3D printer to fabricate the facets and a flatbed UV printer to coat them with inks. We validate our method by fabricating a variety of isotropic and anisotropic materials with rich variations in normals and tangents.
引用
收藏
页数:11
相关论文
共 30 条
[1]  
ALEXA M., 2010, ACM T GRAPH, V29, P60
[2]  
[Anonymous], DIGITAL MODELING MAT
[3]  
[Anonymous], 2005, EUROGRAPHICS S RENDE, DOI [DOI 10.2312/EGWR/EGSR05/117-1261,2,8, DOI 10.2312/EGWR/EGSR05/117-126]
[4]  
[Anonymous], ACM T GRAPH
[5]  
Ashikhmin M, 2000, COMP GRAPH, P65, DOI 10.1145/344779.344814
[6]   SHADOWPIX: Multiple Images from Self Shadowing [J].
Bermano, Amit ;
Baran, Ilya ;
Alexa, Marc ;
Matusk, Wojciech .
COMPUTER GRAPHICS FORUM, 2012, 31 (02) :593-602
[7]  
Dong Y., 2012, ACM T GRAPH, V31
[8]  
Dong Y., 2011, APPGEN INTERACTIVE M, V30
[9]   Linear light source reflectometry [J].
Gardner, A ;
Tchou, C ;
Hawkins, T ;
Debevec, P .
ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03) :749-758
[10]  
Gondek J. S., 1994, Computer Graphics Proceedings. Annual Conference Series 1994. SIGGRAPH 94 Conference Proceedings, P213, DOI 10.1145/192161.192202