Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp PCC 7120

被引:125
作者
Masukawa, H
Mochimaru, M
Sakurai, H [1 ]
机构
[1] Waseda Univ, Grad Sch Sci & Engn, Sch Educ, Shinjuku Ku, Tokyo 1698050, Japan
[2] Waseda Univ, Grad Sch Sci & Engn, Div Pure & Appl Phys, Shinjuku Ku, Tokyo 1698050, Japan
[3] Komazawa Univ, Fac Letters, Fac Nat Sci, Setagaya Ku, Tokyo 1548525, Japan
关键词
D O I
10.1007/s00253-002-0934-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In order to determine the effects of the deletion of hydrogenase genes on nitrogenase-based photobiological H-2 productivity by heterocystous N-2-fixing cyanobacteria. we have constructed three hydrogenase mutants from Anabaena sp. PCC 7120: hupL(-) (deficient in the uptake hydrogenase), hoxH(-) (deficient in the bidirectional hydrogenase), and hupL(-/)hoxH(-) (deficient in both genes). The hupL(-) mutant produced H-2 at a rate four to seven times that of the wild-type under optimal conditions. The hoxH(-) Mutant produced significantly lower amounts of H-2 and had slightly lower nitrogenase activity than wildtype. H-2 production by the hupL(-)/hoxH(-) mutant was slightly lower than, but almost equal to, that of the hupL(-) mutant. The efficiency of light energy conversion to H-2 by the hupL(-) mutant at its highest H-2 production stage was 1.2% at an actinic visible light intensity of 10 W/m(2) (PAR) under argon atmosphere. These results indicate that deletion of the hupL gene could be employed as a source for further improvement of H-2 production in a nitrogenase-based photobiological H-2 production system.
引用
收藏
页码:618 / 624
页数:7
相关论文
共 39 条
[1]   The bidirectional hydrogenase of Synechocystis sp PCC 6803 works as an electron valve during photosynthesis [J].
Appel, J ;
Phunpruch, S ;
Steinmüller, K ;
Schulz, R .
ARCHIVES OF MICROBIOLOGY, 2000, 173 (5-6) :333-338
[2]   Hydrogen metabolism in organisms with oxygenic photosynthesis: hydrogenases as important regulatory devices for a proper redox poising? [J].
Appel, J ;
Schulz, R .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1998, 47 (01) :1-11
[3]   Hydrogen biotechnology: Progress and prospects [J].
Benemann, J .
NATURE BIOTECHNOLOGY, 1996, 14 (09) :1101-1103
[4]   SPATIAL EXPRESSION AND AUTOREGULATION OF HETR, A GENE INVOLVED IN THE CONTROL OF HETEROCYST DEVELOPMENT IN ANABAENA [J].
BLACK, TA ;
CAI, YP ;
WOLK, CP .
MOLECULAR MICROBIOLOGY, 1993, 9 (01) :77-84
[5]  
Borodin VB, 2000, BIOTECHNOL BIOENG, V69, P478, DOI 10.1002/1097-0290(20000905)69:5<478::AID-BIT2>3.0.CO
[6]  
2-L
[7]   UTILIZATION OF MOLECULAR-HYDROGEN BY BLUE-GREEN-ALGA ANABAENA-CYLINDRICA [J].
BOTHE, H ;
TENNIGKEIT, J ;
EISBRENNER, G .
ARCHIVES OF MICROBIOLOGY, 1977, 114 (01) :43-49
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   USE OF A CONDITIONALLY LETHAL GENE IN ANABAENA SP-STRAIN PCC-7120 TO SELECT FOR DOUBLE RECOMBINANTS AND TO ENTRAP INSERTION SEQUENCES [J].
CAI, YP ;
WOLK, CP .
JOURNAL OF BACTERIOLOGY, 1990, 172 (06) :3138-3145
[10]   PROGRAMMED DNA REARRANGEMENT OF A CYANOBACTERIAL HUPL GENE IN HETEROCYSTS [J].
CARRASCO, CD ;
BUETTNER, JA ;
GOLDEN, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :791-795