Adiabatic parameter dynamics of perturbed solitary waves

被引:103
作者
Antonova, Mariana [2 ]
Biswas, Anjan [1 ]
机构
[1] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Dept Appl Math & Theoret Phys, Dover, DE 19901 USA
[2] Delaware State Univ, Dept Math, Dover, DE 19901 USA
关键词
Solitons; Adiabatic parameter dynamics; Perturbation; KdV equation; SOLITONS; EQUATION;
D O I
10.1016/j.cnsns.2007.12.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The soliton perturbation theory is used to study the solitons that are governed by the generalized Korteweg-de Vries equation in the presence of perturbation terms. The adiabatic parameter dynamics of the solitons in the presence of the perturbation terms are obtained. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:734 / 748
页数:15
相关论文
共 10 条
[1]  
Biswas A, 2007, INT J MOD MATH, V2, P35
[2]   An investigation on internal solitary waves in a two-layer fluid: Propagation and reflection from steep slopes [J].
Chen, -Yuan Chen ;
Hsu, John Rong-Chung ;
Cheng, Min-Hung ;
Chen, Hsin-Hsun ;
Kuo, Ching-Feng .
OCEAN ENGINEERING, 2007, 34 (01) :171-184
[3]  
Feng ZS, 2002, DYNAM CONT DIS SER A, V9, P563
[4]   DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :763-915
[5]  
KODAMA Y, 1981, STUD APPL MATH, V64, P225
[6]   Soliton interaction for the extended Korteweg-de Vries equation [J].
Marchant, TR ;
Smyth, NF .
IMA JOURNAL OF APPLIED MATHEMATICS, 1996, 56 (02) :157-176
[7]  
OSBORNE AR, 1997, NONLINEAR PROC GEOPH, V4, P29
[8]   New solitons and kink solutions for the Gardner equation [J].
Wazwaz, Abdul-Majid .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (08) :1395-1404
[9]   New sets of solitary wave solutions to the KdV, mKdV, and the generalized KdV equations [J].
Wazwaz, Abdul-Majid .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (02) :331-339
[10]  
ZHIDKOV PE, 2001, KORTEWEG DE VRIES NO