Categorization based Relevance Feedback Search Engine for Earth Observation Images Repositories

被引:14
作者
Costache, Mihai [1 ]
Maitre, Henri [1 ]
Datcu, Mihai [2 ]
机构
[1] Telecom Paris, GET, 46 Rue Barrault, F-75013 Paris, France
[2] German Aerosp Ctr DLR, Oberpfaffenhofen 82234, Germany
来源
2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8 | 2006年
关键词
D O I
10.1109/IGARSS.2006.8
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Presently Earth Observation (EO) satellites acquire huge volumes of high resolution images very much over-passing the capacity of the users to access the information content of the acquired data. Thus, in addition to the existing methods for EO data and information extraction, new methods and tools are needed to explore and help to discover the information hidden in large EO image repositories. This article presents a categorisation based Relevance Feedback (RF) search engine for EO images repositories The developed method is presented as well results obtained for a SPOT5 satellite image database.
引用
收藏
页码:13 / +
页数:2
相关论文
共 11 条
[1]   The Bayesian image retrieval system, PicHunter:: Theory, implementation, and psychophysical experiments [J].
Cox, IJ ;
Miller, ML ;
Minka, TP ;
Papathomas, TV ;
Yianilos, PN .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (01) :20-37
[3]  
Ferecatu M., 2004, 5258 INRIA
[4]  
Hong PY, 2000, 2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, P750
[5]  
ISHIKAWA Y, 1998, P 24 VLDB C NEW YORK
[6]  
ONODA T, 2003, ACT MIN 2 INT WORKSH
[7]  
SALTON G, 1982, INTRO MODERN INFORM
[8]  
Sclaroff S, 1997, IEEE WORKSHOP ON CONTENT-BASED ACCESS OF IMAGE AND VIDEO LIBRARIES, PROCEEDINGS, P2
[9]  
THONG S, 2001, P ACM MULT, V5, P107
[10]   A Bayesian framework for content-based indexing and retrieval [J].
Vasconcelos, N ;
Lippman, A .
DCC '98 - DATA COMPRESSION CONFERENCE, 1998, :580-580