Spatiotemporal prediction for log-Gaussian Cox processes

被引:134
作者
Brix, A [1 ]
Diggle, PJ [1 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Med Stat Unit, Lancaster LA1 4YF, England
关键词
Markov process; metropolis adjusted Langevin algorithm; Ornstein-Uhlenbeck process; space-time point process;
D O I
10.1111/1467-9868.00315
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Space-time point pattern data have become more widely available as a result of technological developments In areas such as geographic information systems. We describe a flexible class of space-time point processes. Our models are Cox processes whose stochastic intensity is a space-time Ornstein-Uhlenbeck process. We develop moment-based methods of parameter estimation, show how to predict the underlying intensity by using a Markov chain Monte Carlo approach and illustrate the performance of our methods on a synthetic data set.
引用
收藏
页码:823 / 841
页数:19
相关论文
共 34 条
[1]  
[Anonymous], 1993, FRONTIERS PURE APPL
[2]  
BADDELEY A, 1998, STAT NEERL, V54, P329
[3]   SPECTRAL ANALYSIS OF 2-DIMENSIONAL POINT PROCESSES [J].
BARTLETT, MS .
BIOMETRIKA, 1964, 51 (3-4) :299-&
[4]  
Besag, 1994, J R STAT SOC B, V56, P591, DOI DOI 10.1111/J.2517-6161.1994.TB02000.X
[5]   BAYESIAN IMAGE-RESTORATION, WITH 2 APPLICATIONS IN SPATIAL STATISTICS [J].
BESAG, J ;
YORK, J ;
MOLLIE, A .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1991, 43 (01) :1-20
[6]  
Bremaud P., 1981, Point Processes and Queues: Martingale Dynamics
[7]  
BRIX A, 1998, 987 ROYAL VET AGR U
[8]  
BRIX A, 2001, IN PRESS SCAND J STA
[9]   Blur-generated non-separable space-time models [J].
Brown, PE ;
Kåresen, KF ;
Roberts, GO ;
Tonellato, S .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :847-860
[10]  
CHRISTENSEN OF, 2000, R0020009 AALB U DEP