Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces

被引:430
作者
Bhushan, Bharat [1 ]
Jung, Yong Chae [1 ]
Koch, Kerstin [2 ]
机构
[1] Ohio State Univ, Nanoprobe Lab Bio & Nanotechnol & Biomimet, Columbus, OH 43210 USA
[2] Univ Bonn, Nees Inst Biodivers Plants, D-53115 Bonn, Germany
关键词
IN-VITRO RECONSTITUTION; CONTACT ANGLES; ROUGH SURFACES; CRYSTALS; FRICTION; LOTUS;
D O I
10.1021/la803860d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The hierarchical structured surface of the lotus (Nelumbo nucifera, Gaertn.) leaf provides a model for the development of biomimetic self-cleaning surfaces. On these water-repellent surfaces, water droplets move easily at a low inclination of the leaf and collect dirt particles adhering to the leaf surface. Flat hydrophilic and hydrophobic, nanostructured, microstructured, and hierarchical structured superhydrophobic surfaces were fabricated, and a systematic study of wettability and adhesion properties was carried out. The influence of contact angle hysteresis on self-cleaning by water droplets was studied at different tilt angles (TA) of the specimen surfaces (3 degrees for Lotus wax, 10 degrees for n-hexatriacontane, as well as 45 degrees for both types of surfaces). At 3 degrees and 10 degrees TA, no surfaces were cleaned by moving water applied onto the surfaces with nearly zero kinetic energy, but most particles were removed from hierarchical structured surfaces, and a certain amount of particles were captured between the asperities of the micro- and hierarchical structured surfaces. After an increase of the TA to 45 degrees (larger than the tilt angles of all structured surfaces), as usually used for industrial self-cleaning tests, all nanostructured surfaces were cleaned by water droplets moving over the surfaces followed by hierarchical and microstructures. Droplets applied onto the surfaces with some pressure removed particles residues and led to self-cleaning by a combination of sliding and rolling droplets. Geometrical scale effects were responsible for superior performance of nanostructured surfaces.
引用
收藏
页码:3240 / 3248
页数:9
相关论文
共 41 条
[1]  
Baker E.A., 1982, PLANT CUTICLE, P139
[2]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[3]  
Barthlott W, 2003, REGNUM VEG, V141, P189
[4]   Classification and terminology of plant epicuticular waxes [J].
Barthlott, W ;
Neinhuis, C ;
Cutler, D ;
Ditsch, F ;
Meusel, I ;
Theisen, I ;
Wilhelmi, H .
BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, 1998, 126 (03) :237-260
[5]   Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro/nanopatterned surfaces [J].
Bhushan, Bharat ;
Jung, Yong Chae .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (22)
[6]   Nanostructures for superhydrophobicity and low adhesion [J].
Bhushan, Bharat ;
Koch, Kerstin ;
Jung, Yong Chae .
SOFT MATTER, 2008, 4 (09) :1799-1804
[7]   Biomimetic hierarchical structure for self-cleaning [J].
Bhushan, Bharat ;
Koch, Kerstin ;
Jung, Yong Chae .
APPLIED PHYSICS LETTERS, 2008, 93 (09)
[8]   Cassie-wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic cassie-wenzel wetting transition a 2D or 1D affair? [J].
Bormashenko, Edward ;
Pogreb, Roman ;
Whyman, Gene ;
Erlich, Mordehai .
LANGMUIR, 2007, 23 (12) :6501-6503
[9]  
BURROWS J, 1999, P 36 INT DET C LUX, P294
[10]  
CHAWLA MK, 2001, HDB CRITICAL CLEANIN