Transition to turbulence in a shear flow

被引:62
作者
Eckhardt, B [1 ]
Mersmann, A
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Cv Ossietzky Univ, Fachbereich Phys, D-26111 Oldenburg, Germany
[3] Cv Ossietzky Univ, Inst Chem & Biol Meeres, D-26111 Oldenburg, Germany
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 01期
关键词
D O I
10.1103/PhysRevE.60.509
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the properties of a 19-dimensional Galerkin approximation to a parallel shear flow. The laminar flow with a sinusoidal shape is stable for all Reynolds numbers Re. For sufficiently large Re additional stationary flows occur; they are all unstable. The lifetimes of finite amplitude perturbations shows a fractal dependence on amplitude and Reynolds number. These findings are in accord with observations on plane Couette flow and suggest a universality of this transition scenario in shear flows. [S1063-651X(99)02907-4].
引用
收藏
页码:509 / 517
页数:9
相关论文
共 26 条
[1]   FLOW REGIMES IN A CIRCULAR COUETTE SYSTEM WITH INDEPENDENTLY ROTATING CYLINDERS [J].
ANDERECK, CD ;
LIU, SS ;
SWINNEY, HL .
JOURNAL OF FLUID MECHANICS, 1986, 164 :155-183
[2]  
[Anonymous], 1993, BENARD CELLS TAYLOR
[3]   Low-dimensional models of subcritical transition to turbulence [J].
Baggett, JS ;
Trefethen, LN .
PHYSICS OF FLUIDS, 1997, 9 (04) :1043-1053
[4]   NONLINEAR PROPERTIES OF THERMAL-CONVECTION [J].
BUSSE, FH .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (12) :1929-&
[5]   Tertiary and quaternary solutions for plane Couette flow [J].
Clever, RM ;
Busse, FH .
JOURNAL OF FLUID MECHANICS, 1997, 344 :137-153
[6]   TRANSITION TO TURBULENCE IN CONSTANT-MASS-FLUX PIPE-FLOW [J].
DARBYSHIRE, AG ;
MULLIN, T .
JOURNAL OF FLUID MECHANICS, 1995, 289 :83-114
[7]  
Dauchot O, 1997, J PHYS II, V7, P371, DOI 10.1051/jp2:1997131
[8]   SUBCRITICAL TRANSITION TO TURBULENCE IN PLANE COUETTE-FLOW [J].
DAVIAUD, F ;
HEGSETH, J ;
BERGE, P .
PHYSICAL REVIEW LETTERS, 1992, 69 (17) :2511-2514
[9]  
Drazin P.G., 1981, HYDRODYNAMIC STABILI
[10]   INTEGRABLE AND CHAOTIC MOTIONS OF 4 VORTICES .2. COLLISION DYNAMICS OF VORTEX PAIRS [J].
ECKHARDT, B ;
AREF, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 326 (1593) :655-696