Long-wave instability in marginally stable shear flows

被引:3
作者
Balmforth, NJ
Young, WR
机构
[1] University of California at San Diego, La Jolla, CA
关键词
D O I
10.1103/PhysRevLett.79.4155
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A reduced description of disturbances on marginally stable shear flows is presented. The system is the Boussinesq equation coupled to a critical-layer, vorticity equation.
引用
收藏
页码:4155 / 4158
页数:4
相关论文
共 20 条
[1]  
BALMFORTH NJ, STABILITY VORTICITY
[2]  
BENNEY DJ, 1969, STUD APPL MATH, V48, P181
[3]   EXACT NONLINEAR PLASMA OSCILLATIONS [J].
BERNSTEIN, IB ;
GREENE, JM ;
KRUSKAL, MD .
PHYSICAL REVIEW, 1957, 108 (03) :546-550
[4]   ABSOLUTE RATE CONSTANTS FOR REACTIONS OF O(P-3) ATOMS WITH DCL AND DBR [J].
BROWN, RDH ;
SMITH, IWM .
INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 1978, 10 (01) :1-14
[5]   The nonlinear critical layer resulting from the spatial or temporal evolution of weakly unstable disturbances in shear flows [J].
Churilov, SM ;
Shukhman, IG .
JOURNAL OF FLUID MECHANICS, 1996, 318 :189-221
[6]   AMPLITUDE EQUATIONS FOR ELECTROSTATIC-WAVES - UNIVERSAL SINGULAR BEHAVIOR IN THE LIMIT OF WEAK INSTABILITY [J].
CRAWFORD, JD .
PHYSICS OF PLASMAS, 1995, 2 (01) :97-128
[7]   ON HIGH REYNOLDS NUMBER FLOW OVER A WAVY BOUNDARY [J].
DAVIS, RE .
JOURNAL OF FLUID MECHANICS, 1969, 36 :337-&
[8]  
HABERMAN R, 1972, STUD APPL MATH, V51, P139
[9]   TIME-DEPENDENT ISOLATED ANOMALIES IN ZONAL FLOWS [J].
HELFRICH, KR ;
PEDLOSKY, J .
JOURNAL OF FLUID MECHANICS, 1993, 251 :377-409
[10]  
HICKERNELL FJ, 1983, STUD APPL MATH, V69, P1