On the hardness of approximating minimum vertex cover

被引:372
作者
Dinur, I
Safra, S
机构
[1] Univ Calif Berkeley, Miller Inst, Berkeley, CA 94720 USA
[2] Tel Aviv Univ, Sch Comp Sci, IL-69978 Tel Aviv, Israel
关键词
D O I
10.4007/annals.2005.162.439
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the Minimum Vertex Cover problem to be NP-hard to approximate to within a factor of 1.3606, extending on previous PCP and hardness of approximation technique. To that end, one needs to develop a new proof framework, and to borrow and extend ideas from several fields.
引用
收藏
页码:439 / 485
页数:47
相关论文
共 47 条
[1]   The complete intersection theorem for systems of finite sets [J].
Ahlswede, R ;
Khachatrian, LH .
EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (02) :125-136
[2]  
Ajtai M., 1998, STOC, P10
[3]  
[Anonymous], I HAUTES ETUDES SCI
[4]  
[Anonymous], PLENUM COMPLEXITY CO
[5]   The hardness of approximate optima in lattices, codes, and systems of linear equations [J].
Arora, S ;
Babai, L ;
Stern, J ;
Sweedyk, Z .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 54 (02) :317-331
[6]   Proof verification and the hardness of approximation problems [J].
Arora, S ;
Lund, C ;
Motwani, R ;
Sudan, M ;
Szegedy, M .
JOURNAL OF THE ACM, 1998, 45 (03) :501-555
[7]   Probabilistic checking of proofs: A new characterization of NP [J].
Arora, S ;
Safra, S .
JOURNAL OF THE ACM, 1998, 45 (01) :70-122
[8]  
ARORA S, COMMUNICATION
[9]  
Bar-Yehuda R., 1985, ANN DISCRETE MATH, V25, P27, DOI DOI 10.1016/S0304-0208(08)73101-3
[10]   Free bits, PCPs, and nonapproximability - Towards tight results [J].
Bellare, M ;
Goldreich, O ;
Sudan, M .
SIAM JOURNAL ON COMPUTING, 1998, 27 (03) :804-915