A discrete approach to the control and synchronization of a class of chaotic oscillators

被引:9
作者
Gonzalez, J [1 ]
Femat, R
Alvarez-Ramirez, J
Aguilar, R
Barron, M
机构
[1] Univ Autonoma Metropolitana Azcapotzalco, Div Ciencias Basicas & Ingn, Azcapotzalco 07300, DF, Mexico
[2] Univ Autonoma de San Luis Potosi, Fac Ciencias Quim, Ctr Invest & Estud Posgrado, San Luis Potosi, Mexico
[3] Univ Autonoma Metropolitana Iztapalapa, Dept Ingn Proc & Hidraul, Unidad Iztapalapa, Iztapalapa, DF, Mexico
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS | 1999年 / 46卷 / 09期
关键词
chaos; control systems; synchronization;
D O I
10.1109/81.788816
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work deals with the control anti synchronization of chaotic systems. In the first part of the work, a general discrete-time strategy is developed to control a class of second-order uncertain nonlinear systems. The proposed strategy is based on an iterative procedure, borrowed from contraction map methodologies, and provides estimates of unmeasured states and modeling errors. Nonidentical chaotic systems can be synchronized by means of the proposed strategy. By assuming that the exact model of the oscillators is not known and that position is the only state available for measurements, the robust synchronization scheme comprises a recursive feedback-control law. Computer simulations are provided to illustrate the operation of the designed synchronization scheme.
引用
收藏
页码:1139 / 1144
页数:6
相关论文
共 18 条
[1]   A time delay coordinates strategy to control a class of chaotic oscillators [J].
AlvarezRamirez, J ;
Femat, R ;
Gonzalez, J .
PHYSICS LETTERS A, 1996, 211 (01) :41-45
[2]  
[Anonymous], 1989, Deterministic Chaos
[3]  
Astrom K. J., 1995, Adaptive Control
[4]  
BAILIN H, 1990, CHAOS, V2
[5]  
BOSCOVI JD, 1995, IEEE T AUTOMATIC CON, V40, P347
[6]   An adaptive approach to the control and synchronization of continuous-time chaotic systems [J].
DiBernardo, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (03) :557-568
[7]   A strategy to control chaos in nonlinear driven oscillators with least prior knowledge [J].
Femat, R ;
AlvarezRamirez, J ;
Gonzalez, J .
PHYSICS LETTERS A, 1997, 224 (4-5) :271-276
[8]  
FEMAT R, IN PRESS PHYSICA D
[9]   Adaptive control of nonlinear systems with nonlinear parameterization [J].
Karsenti, L ;
LamnabhiLagarrigue, F ;
Bastin, G .
SYSTEMS & CONTROL LETTERS, 1996, 27 (02) :87-97
[10]  
Kincaid D., 1991, NUMERICAL ANAL MATH