Differentiation of male germ cells requires a continuous cross-talk with their somatic support, the Sertoli cell. An in vitro model of Sertoli cells was recently provided by established cell lines which maintain Sertoli-specific characteristics, among which is a regulated phagocytic capacity. In vivo, Sertoli cells take up the residual cytoplasm expelled from the maturing sperm, a process restricted to a limited period of germinal maturation, and they also eliminate abnormally differentiated germ cells in case of hormonal deficiency. Cells of the Sertoli line efficiently take up latex beads, as well as dead cells in the cultures. A semiquantitative assay of phagocytosis was developed, based on the uptake of fluorescent latex beads. 15P-1 cultures were found to contain a minor fraction of active phagocytes. After addition of a defined fraction of germ cells, however, all the cells internalized beads as efficiently as macrophages. The inducing cell was identified as the pachytene spermatocyte, a cell type which, in vivo, is associated with Sertoli cells when they express their phagocytic potential. These inducing meiotic cells were not internalized themselves. Rather, they interacted with Sertoli cells via a surface signal that was resistant to formaldehyde fixation. The whole induction process does not involve changes in Sertoli gene expression, since it occurs even in the presence of high doses of cycloheximide. After the required initial contact, further maintenance of the activity was dependent on factor(s) secreted in the medium of the activated culture. Phagocytosis was, on the other hand, abrogated in the presence of factor(s) secreted by a distinct fraction of germ cells, enriched in the late stages (second division) of meiosis. (C) 1997 Academic Press.