Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode

被引:582
作者
Zhu, Yujie [1 ]
Han, Xiaogang [2 ]
Xu, Yunhua [1 ]
Liu, Yihang [1 ]
Zheng, Shiyou [1 ]
Xu, Kang [3 ]
Hu, Liangbing [2 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[3] US Army Res Lab, Electrochem Branch, Power & Energy Div, Sensor & Electron Devices Directorate, Adelphi, MD 20783 USA
基金
美国国家科学基金会;
关键词
electrospinning; antimony; anode; sodium ion battery; IN-SITU MEASUREMENTS; HIGH-CAPACITY; LOW-COST; THIN-FILMS; INSERTION; CHALLENGES; CATHODE; STORAGE; NANOCOMPOSITES; PERFORMANCES;
D O I
10.1021/nn4025674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) are considered a top alternative to lithium-ion batteries (LIBs) for large-scale renewable energy storage units due to their low cost and the abundance of sodium-bearing precursors in the earth's mineral deposits. However, the development of anode materials for SIBs to date has been mainly limited to carbonaceous materials with minimal research devoted to high capacity alloy-based materials. In this study, an antimony (Sb)/carbon (C) electrode with similar to 30 nm Sb nanoparticles (NPs) uniformly encapsulated in interconnecting one-dimensional (1D) 400 nm carbon fibers (denoted as SbNP@C) was fabricated using a simple and scalable electrospinning method. This binder-free, current collector-free SbNP@C electrode demonstrated high capacity and stable long-term cycling performance at various current densities. The SbNP@C electrode showed an initial total capacity of 422 mAh/g(electrode) and retained 350 mAh/g(electrode) after 300 deep charge-discharge cycles under 100 mA/g(sb). Moreover, because of the efficient 1D sodium-ion transport pathway and the highly conductive network of SbNP@C, the electrode preserved high overall capacities even when cycled at high currents, extending its usability to high power applications.
引用
收藏
页码:6378 / 6386
页数:9
相关论文
共 37 条
[1]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[2]  
[Anonymous], 2011, ENERG ENVIRON SCI, V4, P3342
[3]   Cu2Sb thin films as anode for Na-ion batteries [J].
Baggetto, Loic ;
Allcorn, Eric ;
Manthiram, Arumugam ;
Veith, Gabriel M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 :168-171
[4]   A sodium-ion cell based on the fluorophosphate compound NaVPO4F [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (01) :A1-A4
[5]  
Berthelot R, 2011, NAT MATER, V10, P74, DOI [10.1038/nmat2920, 10.1038/NMAT2920]
[6]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[7]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+
[8]   Challenges for Na-ion Negative Electrodes [J].
Chevrier, V. L. ;
Ceder, G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A1011-A1014
[9]   Better Cycling Performances of Bulk Sb in Na-Ion Batteries Compared to Li-Ion Systems: An Unexpected Electrochemical Mechanism [J].
Darwiche, Ali ;
Marino, Cyril ;
Sougrati, Moulay T. ;
Fraisse, Bernard ;
Stievano, Lorenzo ;
Monconduit, Laure .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (51) :20805-20811
[10]   Tin and graphite based nanocomposites: Potential anode for sodium ion batteries [J].
Datta, Moni Kanchan ;
Epur, Rigved ;
Saha, Partha ;
Kadakia, Karan ;
Park, Sung Kyoo ;
Kuma, Prashant N. .
JOURNAL OF POWER SOURCES, 2013, 225 :316-322