Nonequilibrium phase transitions induced by multiplicative noise

被引:229
作者
VandenBroeck, C
Parrondo, JMR
Toral, R
Kawai, R
机构
[1] UNIV COMPLUTENSE MADRID, DEPT FIS APLICADA 1, E-28040 MADRID, SPAIN
[2] UNIV ILLES BALEARS, DEPT FIS, E-07071 PALMA DE MALLORCA, SPAIN
[3] UNIV ILLES BALEARS, CSIC, IMEDEA, INST MEDITERRANEO ESTUDIOW AVANZADOS, E-07071 PALMA DE MALLORCA, SPAIN
[4] UNIV ALABAMA, DEPT PHYS, BIRMINGHAM, AL 35294 USA
关键词
D O I
10.1103/PhysRevE.55.4084
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We review a mean-field analysis and give the details of a correlation function approach for spatially distributed systems subject to multiplicative noise, white in space and time. We confirm the existence of a pure noise-induced reentrant nonequilibrium phase transition in the model introduced in [C. Van den Broeck et al., Phys. Rev. Lett. 73, 3395 (1994)], give an intuitive explanation of its origin, and present extensive simulations in dimension d=2. The observed critical properties are compatible with those of the Ising universality class.
引用
收藏
页码:4084 / 4094
页数:11
相关论文
共 61 条
[1]  
ABRAHAM N, 1988, INSTABILITIES CHAOS, V2
[2]  
Amit D. J., 1984, FIELD THEORY RENORMA
[3]  
[Anonymous], MONTE CARLO METHODS
[4]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[5]   LINEAR-STABILITY ANALYSIS FOR BIFURCATIONS IN SPATIALLY EXTENDED SYSTEMS WITH FLUCTUATING CONTROL PARAMETER [J].
BECKER, A ;
KRAMER, L .
PHYSICAL REVIEW LETTERS, 1994, 73 (07) :955-958
[6]   STRUCTURAL PHASE-TRANSITIONS .2. STATIC CRITICAL-BEHAVIOR [J].
BRUCE, AD .
ADVANCES IN PHYSICS, 1980, 29 (01) :111-217
[7]  
Cardy J., 1988, FINITE SIZE SCALING
[9]  
DEKEPPER P, 1979, SYNERGETICS FAR EQUI
[10]   STATISTICAL-MECHANICS OF A NON-LINEAR STOCHASTIC-MODEL [J].
DESAI, RC ;
ZWANZIG, R .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :1-24