Collapsing mechanistic models: An application to dose selection for proof of concept of a selective irreversible antagonist

被引:10
作者
Hutmacher, MM
Mukherjee, D
Kowalski, KG
Jordan, DC
机构
[1] Pfizer Corp Pharmacometr, Ann Arbor, MI 48015 USA
[2] PPD, Biostat, Morrisville, NC 27560 USA
[3] Abbott Labs, GPRD Stat, Abbott Pk, IL 60064 USA
关键词
population modeling; pharmacodynamics; indirect response models; differential equations; dose-effect analysis; NONMEM;
D O I
10.1007/s10928-005-0052-0
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
When data fail to support fully mechanistic models, alternative modeling strategies must be pursued. Simpler, more empirical models or the fixing of various rate constants are necessary to avoid over-parameterization. Fitting empirical models can dilute information, limit interpretation, and cloud inference. Fixing rate constants requires external, relevant, and reliable information on the mechanism and can introduce subjectivity as well as complicate determining the validity of model extrapolation. Furthermore, both these methods ignore the possibility that failure of the data to support the mechanistic model could contain information about the pharmacodynamic process. If the pathway has processes with "fast" dynamics, these steps could collapse yielding parametrically simpler classes of models. The collapsed models would retain the mechanistic interpretation of the full model, which is crucial for performing substantive inference, while reducing the number of parameters to be estimated. These concepts are illustrated through their manifestations on the dose-effect relationship and ensuing dose selection for a proof of concept study. Specifically, a mechanistic model for a selective irreversible antagonist was posited and candidate classes of models were derived utilizing "fast dynamics" assumptions. Model assessment determined the rate-limiting step facilitating pertinent inference with respect to the mechanism. For comparison, inference using a more empirical modeling strategy is also presented. A general solution for the collapse of the typical PK-PD model differential equations is provided in Appendix A.
引用
收藏
页码:501 / 520
页数:20
相关论文
共 12 条
[1]  
BEAL SL, 1996, NONMEM USERS GUIDES
[2]   COMPARISON OF 4 BASIC MODELS OF INDIRECT PHARMACODYNAMIC RESPONSES [J].
DAYNEKA, NL ;
GARG, V ;
JUSKO, WJ .
JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1993, 21 (04) :457-478
[3]  
Efron B., 1982, SOC IND APPL MATH CB, V38, DOI [10.1137/1.9781611970319, DOI 10.1137/1.9781611970319]
[4]   Use of prior information to stabilize a population data analysis [J].
Gisleskog, PO ;
Karlsson, MO ;
Beal, SL .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2002, 29 (5-6) :473-505
[5]   A model for the turnover of dihydrotestosterone in the presence of the irreversible 5α-reductase inhibitors GI198745 and finasteride [J].
Gisleskog, PO ;
Hermann, D ;
Hammarlund-Udenaes, M ;
Karlsson, MO .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 1998, 64 (06) :636-647
[6]  
Hahn G.J., 1970, J QUAL TECHNOL, V2, P115, DOI [DOI 10.1080/00224065.1970.11980426, 10.1080/00224065.1970.11980426]
[7]   Time-dependent oral absorption models [J].
Higaki, K ;
Yamashita, S ;
Amidon, GL .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2001, 28 (02) :109-128
[8]   CONVERGENCE OF DIRECT AND INDIRECT PHARMACODYNAMIC RESPONSE MODELS - RESPONSE [J].
JUSKO, WJ ;
KO, HC ;
EBLING, WF .
JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1995, 23 (01) :5-8
[9]   Characterization of four basic models of indirect pharmacodynamic responses [J].
Sharma, A ;
Jusko, WJ .
JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1996, 24 (06) :611-635
[10]   A GENERAL CONCEPTUAL-MODEL FOR NONSTEADY STATE PHARMACOKINETIC/PHARMACODYNAMIC DATA [J].
VEROTTA, D ;
SHEINER, LB .
JOURNAL OF PHARMACOKINETICS AND BIOPHARMACEUTICS, 1995, 23 (01) :1-4