Towards the evaluation of the relevant degrees of freedom in nonlinear partial differential equations

被引:10
作者
Degenhard, A
Rodríguez-Laguna, J
机构
[1] Inst Canc Res, Dept Phys, Sutton SM2 5PT, Surrey, England
[2] CSIC, Inst Matemat & Fis Fundamental, E-28006 Madrid, Spain
关键词
renormalization group; coarse-graining; nonlinear evolutionary dynamics; partial differential equations;
D O I
10.1023/A:1014041904951
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate an operator renormalization group method to extract and describe the relevant degrees of freedom in the evolution of partial differential equations. The proposed renormalization group approach is formulated as an analytical method providing the fundamental concepts of a numerical algorithm applicable to various dynamical systems. We examine dynamical scaling characteristics in the short-time and the long-time evolution regime providing only a reduced number of degrees of freedom to the evolution process.
引用
收藏
页码:1093 / 1120
页数:28
相关论文
共 36 条
[1]   DETERMINISTIC AND STOCHASTIC SURFACE GROWTH WITH GENERALIZED NONLINEARITY [J].
AMAR, JG ;
FAMILY, F .
PHYSICAL REVIEW E, 1993, 47 (03) :1595-1603
[2]   NUMERICAL-SIMULATION OF THE KARDAR-PARISI-ZHANG EQUATION [J].
BECCARIA, M ;
CURCI, G .
PHYSICAL REVIEW E, 1994, 50 (06) :4560-4563
[3]   SELF-CONSISTENT APPROACH TO THE KARDAR-PARISI-ZHANG EQUATION [J].
BOUCHAUD, JP ;
CATES, ME .
PHYSICAL REVIEW E, 1993, 47 (03) :R1455-R1458
[4]  
Burgers J M, 1974, NONLINEAR DIFFUSION, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
[5]   A non-perturbative real-space renormalization group scheme [J].
Degenhard, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (35) :6173-6185
[6]  
DEGENHARD A, 2001, IN PRESS PHYS REV E
[7]  
deSousa JR, 1996, PHYS LETT A, V216, P321, DOI 10.1016/0375-9601(96)00289-7
[8]   INTERFACE GROWTH AND BURGERS TURBULENCE - THE PROBLEM OF RANDOM INITIAL CONDITIONS [J].
ESPIOV, SE ;
NEWMAN, TJ .
PHYSICAL REVIEW E, 1993, 48 (02) :1046-1050
[9]   HYPERCUBE STACKING - A POTTS-SPIN MODEL FOR SURFACE GROWTH [J].
FORREST, BM ;
TANG, LH .
JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (1-2) :181-202
[10]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749