Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate

被引:1122
作者
Sillmann, J. [1 ]
Kharin, V. V. [1 ]
Zhang, X. [2 ]
Zwiers, F. W. [3 ]
Bronaugh, D. [3 ]
机构
[1] Canadian Ctr Climate Modelling & Anal, Victoria, BC, Canada
[2] Environm Canada, Toronto, ON, Canada
[3] Pacific Climate Impacts Consortium, Victoria, BC, Canada
基金
澳大利亚研究理事会;
关键词
PRECIPITATION EXTREMES; TEMPERATURE; REANALYSIS; SIMULATIONS; ERA;
D O I
10.1002/jgrd.50203
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper provides a first overview of the performance of state-of-the-art global climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in simulating climate extremes indices defined by the Expert Team on Climate Change Detection and Indices (ETCCDI), and compares it to that in the previous model generation (CMIP3). For the first time, the indices based on daily temperature and precipitation are calculated with a consistent methodology across multimodel simulations and four reanalysis data sets (ERA40, ERA-Interim, NCEP/NCAR, and NCEP-DOE) and are made available at the ETCCDI indices archive website. Our analyses show that the CMIP5 models are generally able to simulate climate extremes and their trend patterns as represented by the indices in comparison to a gridded observational indices data set (HadEX2). The spread amongst CMIP5 models for several temperature indices is reduced compared to CMIP3 models, despite the larger number of models participating in CMIP5. Some improvements in the CMIP5 ensemble relative to CMIP3 are also found in the representation of the magnitude of precipitation indices. We find substantial discrepancies between the reanalyses, indicating considerable uncertainties regarding their simulation of extremes. The overall performance of individual models is summarized by a "portrait" diagram based on root-mean-square errors of model climatologies for each index and model relative to four reanalyses. This metric analysis shows that the median model climatology outperforms individual models for all indices, but the uncertainties related to the underlying reference data sets are reflected in the individual model performance metrics. Citation: Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh (2013), Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate, J. Geophys. Res. Atmos., 118, 1716-1733, doi:10.1002/jgrd.50203.
引用
收藏
页码:1716 / 1733
页数:18
相关论文
共 48 条
[1]   Assessing trends in observed and modelled climate extremes over Australia in relation to future projections [J].
Alexander, Lisa V. ;
Arblaster, Julie M. .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2009, 29 (03) :417-435
[2]   Global observed changes in daily climate extremes of temperature and precipitation [J].
Alexander, LV ;
Zhang, X ;
Peterson, TC ;
Caesar, J ;
Gleason, B ;
Tank, AMGK ;
Haylock, M ;
Collins, D ;
Trewin, B ;
Rahimzadeh, F ;
Tagipour, A ;
Kumar, KR ;
Revadekar, J ;
Griffiths, G ;
Vincent, L ;
Stephenson, DB ;
Burn, J ;
Aguilar, E ;
Brunet, M ;
Taylor, M ;
New, M ;
Zhai, P ;
Rusticucci, M ;
Vazquez-Aguirre, JL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D5)
[3]  
[Anonymous], PAPERS NATURAL RESOU
[4]  
[Anonymous], CHALLENGES IN PRESS
[5]  
[Anonymous], 2009, 72 WCDMP
[6]  
[Anonymous], NCEP NCAR REAN PROBL
[7]  
[Anonymous], 2012, Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change
[8]  
[Anonymous], MANAGING RISKS EXTRE
[9]  
[Anonymous], CLIM CHANG 2007
[10]   Climate model simulated changes in temperature extremes due to land cover change [J].
Avila, F. B. ;
Pitman, A. J. ;
Donat, M. G. ;
Alexander, L. V. ;
Abramowitz, G. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117