Inhibition of nitrate uptake by ammonium in barley. Analysis of component fluxes

被引:118
作者
Kronzucker, HJ [1 ]
Glass, ADM
Siddiqi, MY
机构
[1] Univ Western Ontario, Dept Plant Sci, London, ON N6A 5B7, Canada
[2] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
关键词
D O I
10.1104/pp.120.1.283
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
NO3- uptake by plant roots is rapidly inhibited by exposure to NH4+. The rapidity of the effect has led to the presumption that the inhibition results from the direct effects of NH4+ at the plasma membrane. The mechanism of this inhibition, however, has been in contention. In the present study we used the radiotracer N-13 to determine the relative effects of short-term exposures to NH4+ on the (NO3-)-N-13 influx, efflux, and partitioning of absorbed N-13 in barley (Hordeum vulgare) roots. Plants were grown without NO3- or NO2- (uninduced for NO3- uptake), or with 0.1, 1.0, 10 mM NO3-, or 0.1 mM NO2- (to generate plant roots induced for NO3- uptake). Exposure to 1 mM NH4+ strongly reduced influx; the effect was most pronounced in plants induced for NO3- uptake when NO3- absorption was measured at low external NO3-. At higher [NO3-] and in uninduced plants the inhibitory effect was much diminished, indicating that NH4+ inhibition of influx was mediated via effects on the inducible high-affinity transport system rather than on the constitutive high-affinity transport system or the low-affinity transport system. Exposure to NH4+ also caused increased NO3- efflux; the largest effect was at low external [NO3-] in uninduced plants. In absolute terms, the reduction of influx made the dominant contribution to the observed reduction of net uptake of NO3-. Differences in response between plants induced with NO3- and those induced with NO2- indicate that NO2- may not be an appropriate analog for NO3- under all conditions.
引用
收藏
页码:283 / 291
页数:9
相关论文
共 53 条
[1]   STIMULATION OF NITRATE AND NITRITE EFFLUX BY AMMONIUM IN BARLEY (HORDEUM-VULGARE L) SEEDLINGS [J].
ASLAM, M ;
TRAVIS, RL ;
HUFFAKER, RC .
PLANT PHYSIOLOGY, 1994, 106 (04) :1293-1301
[2]   COMPARATIVE INDUCTION OF NITRATE AND NITRITE UPTAKE AND REDUCTION SYSTEMS BY AMBIENT NITRATE AND NITRITE IN INTACT ROOTS OF BARLEY (HORDEUM-VULGARE L) SEEDLINGS [J].
ASLAM, M ;
TRAVIS, RL ;
HUFFAKER, RC .
PLANT PHYSIOLOGY, 1993, 102 (03) :811-819
[3]   COMPARATIVE KINETICS AND RECIPROCAL INHIBITION OF NITRATE AND NITRITE UPTAKE IN ROOTS OF UNINDUCED AND INDUCED BARLEY (HORDEUM-VULGARE L) SEEDLINGS [J].
ASLAM, M ;
TRAVIS, RL ;
HUFFAKER, RC .
PLANT PHYSIOLOGY, 1992, 99 (03) :1124-1133
[4]   COMPARATIVE INDUCTION OF NITRATE REDUCTASE BY NITRATE AND NITRITE IN BARLEY LEAVES [J].
ASLAM, M ;
ROSICHAN, JL ;
HUFFAKER, RC .
PLANT PHYSIOLOGY, 1987, 83 (03) :579-584
[5]   Differential effect of ammonium on the induction of nitrate and nitrite reductase activities in roots of barley (Hordeum vulgare) seedlings [J].
Aslam, M ;
Travis, RL ;
Rains, DW ;
Huffaker, RC .
PHYSIOLOGIA PLANTARUM, 1997, 101 (03) :612-619
[6]   THE EFFECT OF AMMONIUM-IONS ON MEMBRANE-POTENTIAL AND ANION FLUX IN ROOTS OF BARLEY AND TOMATO [J].
AYLING, SM .
PLANT CELL AND ENVIRONMENT, 1993, 16 (03) :297-303
[7]   THE INFLUENCE OF AMMONIUM AND CHLORIDE ON POTASSIUM AND NITRATE ABSORPTION BY BARLEY ROOTS DEPENDS ON TIME OF EXPOSURE AND CULTIVAR [J].
BLOOM, AJ ;
FINAZZO, J .
PLANT PHYSIOLOGY, 1986, 81 (01) :67-69
[8]   EFFECT OF AMMONIUM ON NITRATE UTILIZATION BY ROOTS OF DWARF BEAN [J].
BRETELER, H ;
SIEGERIST, M .
PLANT PHYSIOLOGY, 1984, 75 (04) :1099-1103
[9]   DETERMINATION OF NITRATE IN SOIL SOLUTIONS BY ULTRAVIOLET SPECTROPHOTOMETRY [J].
CAWSE, PA .
ANALYST, 1967, 92 (1094) :311-&
[10]  
CHAILLOU S, 1994, PHYSIOL PLANTARUM, V90, P259, DOI 10.1111/j.1399-3054.1994.tb00386.x