Effect of borax addition on the structural modification of bentonite in biodegradable alginate-based biocomposites

被引:17
作者
Benli, Birgul [1 ]
机构
[1] Istanbul Tech Univ, Mineral Proc Engn Dept, TR-34469 Maslak, Turkey
关键词
self-assembly; polysaccharides; clay; properties and characterization; gels;
D O I
10.1002/app.38609
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Functionalized next generation biodegradable polymeric systems (bioplastics) that have better compatibility, enhanced relaxation, and thermal properties were designed using bentonite-added alginate biocomposite films in the presence of borax. A series of bentonite-added biocomposite films crosslinked with CaCl2 were characterized by using methods like XRD, FTIR, TGA, DTA/DSC, DMA, and AFM. A plausible structural mechanism with Ca2+ crosslinking gel formation known as egg-box and borate ion complexes was proposed to elucidate the interactions between borax and bentonite/alginate biocomposites. Enhanced compatibility and hybrid properties of raw fillers were confirmed by mineral processing steps involving hydrocyclone purification for bentonite and recrystallization steps for borax. The structure of bentonite and also bentonite hybrid biocomposites were clearly improved upon small additions of borax into the matrix. The presence of borax was found to provide a more intercalated or exfoliated morphology for a given hybrid biocomposite structure. Borate ions dissociated in aqueous solution provided a better effect on the intercalation of bentonite by imparting new hydrogen bonding sites, diol-complexes, and didiol-crosslinking gels. (c) 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
引用
收藏
页码:4172 / 4180
页数:9
相关论文
共 43 条
[1]  
Zee M., Handbook of Biodegradable Polymers, (2005)
[2]  
Rhima J.W., Perry K., Ng W., Crit. Rev. Food Sci. Nutr., 47, (2007)
[3]  
Flieger M., Kantorova M., Prell A., Rezanka T., Votruba J., Folia Microbiol., 48, (2003)
[4]  
Yang K., Wang X.L., Wang Z., J. Ind. Eng. Chem., 13, (2007)
[5]  
Wang S.F., Shena L., Tong Y.J., Chen L., Phang I.Y., Lim P.Q., Liu T.X., Polym. Degrad. Stab., 90, (2005)
[6]  
Chivrac F., Pollet E., Schmutz M., Averous L., Carbohyd. Polym., 80, (2010)
[7]  
McGlashan S.A., Halley P., J. Polym. Int., 52, (2003)
[8]  
Alexandre M., Dubois F., Mater. Sci. Eng., 28, (2000)
[9]  
Bordes P., Pollet E., Averous F., Prog. Polym. Sci., 34, (2009)
[10]  
Hussain F., Hojjati M., Okamoto M., Gorga R.E., J. Compos. Mater., 40, (2006)