Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels

被引:112
作者
Wang, DW
George, AL
Bennett, PB
机构
[1] VANDERBILT UNIV,SCH MED,DEPT PHARMACOL,NASHVILLE,TN 37232
[2] VANDERBILT UNIV,SCH MED,DEPT MED,NASHVILLE,TN 37232
关键词
D O I
10.1016/S0006-3495(96)79566-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In this study we have expressed and characterized recombinant cardiac and skeletal muscle sodium channel a subunits in tsA-201 cells under identical experimental conditions. Unlike the Xenopus oocyte expression system, in tsA-201 cells (transformed human embryonic kidney) both channels seem to gate rapidly, as in native tissue. In general, hSkM1 gating seemed faster than hH1 both in terms of rate of inactivation and rate of recovery from inactivation as well as time to peak current, The midpoint of the steady-state inactivation curve was similar to 25 mV more negative for hH1 compared with hSkM1, In both isoforms, the steady-state channel availability relationships (''inactivation curves'') shifted toward more negative membrane potentials with time. The cardiac isoform showed a minimal shift in the activation curve as a function of time after whole-cell dialysis, whereas hSkM1 showed a continued and marked negative shift in the activation voltage dependence of channel gating. This observation suggests that the mechanism underlying the shift in inactivation voltage dependence may be similar to the one that is causing the shift in the activation voltage dependence in hSkM1 but that this is uncoupled in the cardiac isoform. These results demonstrate the utility and limitations of measuring cardiac and skeletal muscle recombinant Na+ channels in tsA-201 cells. This baseline characterization will be useful for future investigations on channel mutants and pharmacology.
引用
收藏
页码:238 / 245
页数:8
相关论文
共 23 条
[1]   A REINTERPRETATION OF MAMMALIAN SODIUM-CHANNEL GATING BASED ON SINGLE CHANNEL RECORDING [J].
ALDRICH, RW ;
COREY, DP ;
STEVENS, CF .
NATURE, 1983, 306 (5942) :436-441
[2]   SODIUM-CHANNELS AND GATING CURRENTS [J].
ARMSTRONG, CM .
PHYSIOLOGICAL REVIEWS, 1981, 61 (03) :644-683
[3]   A MOLECULAR-BASIS FOR GATING MODE TRANSITIONS IN HUMAN SKELETAL-MUSCLE NA+ CHANNELS [J].
BENNETT, PB ;
MAKITA, N ;
GEORGE, AL .
FEBS LETTERS, 1993, 326 (1-3) :21-24
[4]  
CATTERALL WA, 1992, PHYSIOL REV, V72, P15
[5]   FUNCTIONAL EXPRESSION AND PROPERTIES OF THE HUMAN SKELETAL-MUSCLE SODIUM-CHANNEL [J].
CHAHINE, M ;
BENNETT, PB ;
GEORGE, AL ;
HORN, R .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1994, 427 (1-2) :136-142
[6]   SODIUM AND CALCIUM CHANNELS IN BOVINE CHROMAFFIN CELLS [J].
FENWICK, EM ;
MARTY, A ;
NEHER, E .
JOURNAL OF PHYSIOLOGY-LONDON, 1982, 331 (OCT) :599-635
[7]   PRIMARY STRUCTURE AND FUNCTIONAL EXPRESSION OF THE HUMAN CARDIAC TETRODOTOXIN-INSENSITIVE VOLTAGE-DEPENDENT SODIUM-CHANNEL [J].
GELLENS, ME ;
GEORGE, AL ;
CHEN, LQ ;
CHAHINE, M ;
HORN, R ;
BARCHI, RL ;
KALLEN, RG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (02) :554-558
[8]   PRIMARY STRUCTURE OF THE ADULT HUMAN SKELETAL-MUSCLE VOLTAGE-DEPENDENT SODIUM-CHANNEL [J].
GEORGE, AL ;
KOMISAROF, J ;
KALLEN, RG ;
BARCHI, RL .
ANNALS OF NEUROLOGY, 1992, 31 (02) :131-137
[9]   GATING OF NA CHANNELS - INACTIVATION MODIFIERS DISCRIMINATE AMONG MODELS [J].
GONOI, T ;
HILLE, B .
JOURNAL OF GENERAL PHYSIOLOGY, 1987, 89 (02) :253-274
[10]  
Hille B., 1992, IONIC CHANNELS EXCIT